Aix Marseille Univ, INSERM, INS, Inst Neurosci Syst, Marseille, France.
SimLab Neuroscience, Jülich Supercomputing Centre (JSC), Institute for Advanced Simulation, JARA, Forschungszentrum Jülich GmbH, Jülich, Germany.
PLoS Comput Biol. 2021 Jul 14;17(7):e1009129. doi: 10.1371/journal.pcbi.1009129. eCollection 2021 Jul.
Individualized anatomical information has been used as prior knowledge in Bayesian inference paradigms of whole-brain network models. However, the actual sensitivity to such personalized information in priors is still unknown. In this study, we introduce the use of fully Bayesian information criteria and leave-one-out cross-validation technique on the subject-specific information to assess different epileptogenicity hypotheses regarding the location of pathological brain areas based on a priori knowledge from dynamical system properties. The Bayesian Virtual Epileptic Patient (BVEP) model, which relies on the fusion of structural data of individuals, a generative model of epileptiform discharges, and a self-tuning Monte Carlo sampling algorithm, is used to infer the spatial map of epileptogenicity across different brain areas. Our results indicate that measuring the out-of-sample prediction accuracy of the BVEP model with informative priors enables reliable and efficient evaluation of potential hypotheses regarding the degree of epileptogenicity across different brain regions. In contrast, while using uninformative priors, the information criteria are unable to provide strong evidence about the epileptogenicity of brain areas. We also show that the fully Bayesian criteria correctly assess different hypotheses about both structural and functional components of whole-brain models that differ across individuals. The fully Bayesian information-theory based approach used in this study suggests a patient-specific strategy for epileptogenicity hypothesis testing in generative brain network models of epilepsy to improve surgical outcomes.
个性化的解剖学信息已被用作全脑网络模型贝叶斯推断范式的先验知识。然而,先验中对这种个性化信息的实际敏感性尚不清楚。在这项研究中,我们引入了完全贝叶斯信息准则和受试者特异性信息的留一法交叉验证技术,以评估基于动态系统特性的先验知识的不同致痫性假设,这些假设涉及病理性脑区的位置。贝叶斯虚拟癫痫患者(BVEP)模型依赖于个体的结构数据融合、癫痫样放电的生成模型和自调谐蒙特卡罗采样算法,用于推断不同脑区的致痫性空间图谱。我们的结果表明,使用有信息先验的 BVEP 模型测量样本外预测准确性,可以可靠高效地评估不同脑区致痫性程度的潜在假设。相比之下,使用无信息先验时,信息准则无法为脑区的致痫性提供有力证据。我们还表明,完全贝叶斯准则可以正确评估个体间全脑模型的结构和功能成分的不同假设。本研究中使用的基于完全贝叶斯信息论的方法为癫痫生成脑网络模型中的致痫性假设检验提供了一种基于患者个体的策略,以改善手术结果。