Suppr超能文献

优化超声心动图中先天性心脏病的目标检测算法:探索边界框大小和数据增强技术。

Optimizing Object Detection Algorithms for Congenital Heart Diseases in Echocardiography: Exploring Bounding Box Sizes and Data Augmentation Techniques.

作者信息

Chen Shih-Hsin, Weng Ken-Pen, Hsieh Kai-Sheng, Chen Yi-Hui, Shih Jo-Hsin, Li Wen-Ru, Zhang Ru-Yi, Chen Yun-Chiao, Tsai Wan-Ru, Kao Ting-Yi

机构信息

Department of Computer Science and Information Engineering, Tamkang University, 251301 New Taipei, Taiwan.

Congenital Structural Heart Disease Center, Department of Pediatrics, Kaohsiung Veterans General Hospital, 813414 Kaohsiung, Taiwan.

出版信息

Rev Cardiovasc Med. 2024 Sep 19;25(9):335. doi: 10.31083/j.rcm2509335. eCollection 2024 Sep.

Abstract

BACKGROUND

Congenital heart diseases (CHDs), particularly atrial and ventricular septal defects, pose significant health risks and common challenges in detection via echocardiography. Doctors often employ the cardiac structural information during the diagnostic process. However, prior CHD research has not determined the influence of including cardiac structural information during the labeling process and the application of data augmentation techniques.

METHODS

This study utilizes advanced artificial intelligence (AI)-driven object detection frameworks, specifically You Look Only Once (YOLO)v5, YOLOv7, and YOLOv9, to assess the impact of including cardiac structural information and data augmentation techniques on the identification of septal defects in echocardiographic images.

RESULTS

The experimental results reveal that different labeling strategies substantially affect the performance of the detection models. Notably, adjustments in bounding box dimensions and the inclusion of cardiac structural details in the annotations are key factors influencing the accuracy of the model. The application of deep learning techniques in echocardiography enhances the precision of detecting septal heart defects.

CONCLUSIONS

This study confirms that careful annotation of imaging data is crucial for optimizing the performance of object detection algorithms in medical imaging. These findings suggest potential pathways for refining AI applications in diagnostic cardiology studies.

摘要

背景

先天性心脏病(CHD),尤其是房间隔和室间隔缺损,在通过超声心动图检测时会带来重大健康风险和常见挑战。医生在诊断过程中经常利用心脏结构信息。然而,先前的先天性心脏病研究尚未确定在标注过程中纳入心脏结构信息以及应用数据增强技术的影响。

方法

本研究利用先进的人工智能(AI)驱动的目标检测框架,特别是你只看一次(YOLO)v5、YOLOv7和YOLOv9,来评估纳入心脏结构信息和数据增强技术对超声心动图图像中隔缺损识别的影响。

结果

实验结果表明,不同的标注策略对检测模型的性能有显著影响。值得注意的是,边界框尺寸的调整以及注释中包含心脏结构细节是影响模型准确性的关键因素。深度学习技术在超声心动图中的应用提高了检测心脏隔缺损的精度。

结论

本研究证实,仔细标注成像数据对于优化医学成像中目标检测算法的性能至关重要。这些发现为完善诊断心脏病学研究中的人工智能应用提供了潜在途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d55/11440387/fbbd8df456b0/2153-8174-25-9-335-g1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验