Yu Yulin, Romero Daniel M
School of Information, University of Michigan, Ann Arbor, MI 48109.
Center for the Study of Complex Systems, University of Michigan, Ann Arbor, MI 48109.
Proc Natl Acad Sci U S A. 2024 Oct 8;121(41):e2402802121. doi: 10.1073/pnas.2402802121. Epub 2024 Oct 2.
Scientific datasets play a crucial role in contemporary data-driven research, as they allow for the progress of science by facilitating the discovery of new patterns and phenomena. This mounting demand for empirical research raises important questions on how strategic data utilization in research projects can stimulate scientific advancement. In this study, we examine the hypothesis inspired by the recombination theory, which suggests that innovative combinations of existing knowledge, including the use of unusual combinations of datasets, can lead to high-impact discoveries. Focusing on social science, we investigate the scientific outcomes of such atypical data combinations in more than 30,000 publications that leverage over 5,000 datasets curated within one of the largest social science databases, Interuniversity Consortium for Political and Social Research. This study offers four important insights. First, combining datasets, particularly those infrequently paired, significantly contributes to both scientific and broader impacts (e.g., dissemination to the general public). Second, infrequently paired datasets maintain a strong association with citation even after controlling for the atypicality of dataset topics. In contrast, the atypicality of dataset topics has a much smaller positive impact on citation counts. Third, smaller and less experienced research teams tend to use atypical combinations of datasets in research more frequently than their larger and more experienced counterparts. Last, despite the benefits of data combination, papers that amalgamate data remain infrequent. This finding suggests that the unconventional combination of datasets is an underutilized but powerful strategy correlated with the scientific impact and broader dissemination of scientific discoveries.
科学数据集在当代数据驱动的研究中发挥着至关重要的作用,因为它们通过促进新模式和新现象的发现推动科学进步。对实证研究的需求不断增加,引发了关于研究项目中战略性数据利用如何促进科学进步的重要问题。在本研究中,我们检验了受重组理论启发的假设,该假设表明现有知识的创新组合,包括使用不寻常的数据集组合,能够带来高影响力的发现。聚焦于社会科学领域,我们调查了超过30000篇利用了超过5000个数据集的出版物中此类非典型数据组合的科学成果,这些数据集来自最大的社会科学数据库之一——大学间政治和社会研究联盟。本研究提供了四点重要见解。第一,数据集的组合,尤其是那些不常配对的数据集,对科学影响和更广泛的影响(如向公众传播)都有显著贡献。第二,即使在控制了数据集主题的非典型性之后,不常配对的数据集与被引频次仍保持着很强的关联。相比之下,数据集主题的非典型性对被引频次的正向影响要小得多。第三,规模较小且经验较少的研究团队在研究中比规模较大且经验更丰富的团队更频繁地使用非典型的数据集组合。最后,尽管数据组合有诸多益处,但合并数据的论文仍然很少见。这一发现表明,数据集的非常规组合是一种未得到充分利用但强大的策略,与科学影响及科学发现的更广泛传播相关。