ICAR-Indian Institute of Spices Research, Marikunnu, Kozhikode, Kerala, 673012, India.
Department of Botany, University of Calicut, Malappuram, 673635, Kerala, India.
World J Microbiol Biotechnol. 2024 Oct 3;40(11):330. doi: 10.1007/s11274-024-04131-7.
Trichoderma spp. is primarily applied to manage biotic stresses in plants. Still, they also can mitigate abiotic stresses by the stimulation of antioxidative protective mechanisms and enhanced synthesis of secondary metabolites. The study optimized the conditions to enhance peptaibol production by novel Trichoderma spp, characterized and quantified peptaibol- alamethicin using HPLC and LC MS-MS. The present study investigated these isolates efficacy in enhancing growth and the associated physio-biochemical changes in black pepper plants under moisture stress. Under in vitro conditions, out of 51 isolates studied, six isolates viz., T. asperellum (IISR NAIMCC 0049), T. erinaceum (IISR APT1), T. harzianum (IISR APT2), T. harzianum (IISR KL3), T. lixii (IISR KA15) and T. asperellum (IISR TN3) showed tolerance to low moisture levels (5, 10 and 20%) and higher temperatures (35 and 40 °C). In vivo evaluation on black pepper plants maintained under four different moisture levels (Field capacity [FC]; 75%, 50%, and 25%) showed that the plants inoculated with Trichoderma accumulated greater quantities of secondary metabolites viz., proline, phenols, MDA and soluble proteins at low moisture levels (50% and 25% FC). In the present study, plants inoculated with T. asperellum and T. harzianum showed significantly increased growth compared to uninoculated plants. The shortlisted Trichoderma isolates exhibited differences in peptaibol production and indicated that the peptide might be the key factor for their efficiency as biocontrol agents. The present study also demonstrated that Trichoderma isolates T. harzianum and T. asperellum (IISR APT2 & NAIMCC 0049) enhanced the drought-tolerant capabilities of black pepper by improving plant growth and secondary metabolite production.
木霉属主要应用于管理植物的生物胁迫。然而,它们还可以通过刺激抗氧化保护机制和增强次生代谢物的合成来减轻非生物胁迫。本研究通过优化新型木霉属产生肽聚糖的条件,利用 HPLC 和 LC-MS-MS 对肽聚糖-阿马菌素进行了表征和定量。本研究调查了这些分离物在水分胁迫下增强黑胡椒植物生长及其相关生理生化变化的功效。在体外条件下,在所研究的 51 个分离物中,有 6 个分离物,即asperellum(IISR NAIMCC 0049)、T.erinaceum(IISR APT1)、T.harzianum(IISR APT2)、T.harzianum(IISR KL3)、T.lixii(IISR KA15)和 T. asperellum(IISR TN3)对低水分水平(5、10 和 20%)和较高温度(35 和 40°C)表现出耐受性。在黑胡椒植物的体内评价中,这些植物在四种不同的水分水平(田间持水量[FC];75%、50%和 25%)下维持,结果表明,接种木霉的植物在低水分水平(50%和 25% FC)下积累了更多的次生代谢物,如脯氨酸、酚类、MDA 和可溶性蛋白质。在本研究中,与未接种的植物相比,接种了 T. asperellum 和 T. harzianum 的植物表现出显著的生长增加。所选的木霉分离物在肽聚糖产生方面表现出差异,表明该肽可能是其作为生物防治剂效率的关键因素。本研究还表明,木霉属分离物 T. harzianum 和 T. asperellum(IISR APT2 和 NAIMCC 0049)通过提高植物生长和次生代谢物的产生来增强黑胡椒的耐旱能力。