Suppr超能文献

基于深度学习的肺腺癌 H&E 全切片图像中 EGFR 突变频率分析。

Deep learning-based analysis of EGFR mutation prevalence in lung adenocarcinoma H&E whole slide images.

机构信息

Department of Radiation Oncology, Ajou University School of Medicine, Suwon, Republic of Korea.

Department of Biomedical Sciences, Graduate School of Ajou University, Suwon, Republic of Korea.

出版信息

J Pathol Clin Res. 2024 Nov;10(6):e70004. doi: 10.1002/2056-4538.70004.

Abstract

EGFR mutations are a major prognostic factor in lung adenocarcinoma. However, current detection methods require sufficient samples and are costly. Deep learning is promising for mutation prediction in histopathological image analysis but has limitations in that it does not sufficiently reflect tumor heterogeneity and lacks interpretability. In this study, we developed a deep learning model to predict the presence of EGFR mutations by analyzing histopathological patterns in whole slide images (WSIs). We also introduced the EGFR mutation prevalence (EMP) score, which quantifies EGFR prevalence in WSIs based on patch-level predictions, and evaluated its interpretability and utility. Our model estimates the probability of EGFR prevalence in each patch by partitioning the WSI based on multiple-instance learning and predicts the presence of EGFR mutations at the slide level. We utilized a patch-masking scheduler training strategy to enable the model to learn various histopathological patterns of EGFR. This study included 868 WSI samples from lung adenocarcinoma patients collected from three medical institutions: Hallym University Medical Center, Inha University Hospital, and Chungnam National University Hospital. For the test dataset, 197 WSIs were collected from Ajou University Medical Center to evaluate the presence of EGFR mutations. Our model demonstrated prediction performance with an area under the receiver operating characteristic curve of 0.7680 (0.7607-0.7720) and an area under the precision-recall curve of 0.8391 (0.8326-0.8430). The EMP score showed Spearman correlation coefficients of 0.4705 (p = 0.0087) for p.L858R and 0.5918 (p = 0.0037) for exon 19 deletions in 64 samples subjected to next-generation sequencing analysis. Additionally, high EMP scores were associated with papillary and acinar patterns (p = 0.0038 and p = 0.0255, respectively), whereas low EMP scores were associated with solid patterns (p = 0.0001). These results validate the reliability of our model and suggest that it can provide crucial information for rapid screening and treatment plans.

摘要

EGFR 突变是肺腺癌的一个主要预后因素。然而,目前的检测方法需要足够的样本且成本高昂。深度学习在组织病理学图像分析中的突变预测方面具有广阔的前景,但存在局限性,因为它不能充分反映肿瘤异质性且缺乏可解释性。在这项研究中,我们开发了一种深度学习模型,通过分析全切片图像(WSI)中的组织病理学模式来预测 EGFR 突变的存在。我们还引入了 EGFR 突变流行率(EMP)评分,该评分基于斑块级预测来量化 WSI 中的 EGFR 流行率,并评估了其可解释性和实用性。我们的模型通过基于多实例学习的方法对 WSI 进行分区,估计每个斑块中 EGFR 流行率的概率,并在幻灯片级别预测 EGFR 突变的存在。我们利用斑块掩蔽调度训练策略使模型能够学习各种 EGFR 的组织病理学模式。这项研究包括来自三家医疗机构的 868 例肺腺癌患者的 WSI 样本:翰林大学医疗中心、仁荷大学医院和忠南国立大学医院。对于测试数据集,我们从亚洲大学医学中心收集了 197 例 WSI 以评估 EGFR 突变的存在。我们的模型在接收器工作特征曲线下面积为 0.7680(0.7607-0.7720)和精确召回曲线下面积为 0.8391(0.8326-0.8430)方面表现出预测性能。EMP 评分在 64 例进行下一代测序分析的样本中,与 p.L858R 具有 0.4705(p=0.0087)的 Spearman 相关系数,与外显子 19 缺失具有 0.5918(p=0.0037)的 Spearman 相关系数。此外,高 EMP 评分与乳头和腺泡模式相关(p=0.0038 和 p=0.0255),而低 EMP 评分与实体模式相关(p=0.0001)。这些结果验证了我们模型的可靠性,并表明它可以为快速筛选和治疗计划提供关键信息。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b144/11446692/3c8635e0a00c/CJP2-10-e70004-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验