Liu Haoyan, Vohra Nagma, Bailey Keith, El-Shenawee Magda, Nelson Alexander
Dept. of CSCE, University of Arkansas, Fayetteville, AR 72701, USA.
Dept. of Electrical Engineering, University of Arkansas, Fayetteville, AR 72701, USA.
Proc IEEE Int Conf Semant Comput. 2023 Feb;2023:80-87. doi: 10.1109/ICSC56153.2023.00018. Epub 2023 Mar 20.
Semantic Artificial Intelligence has certain qualities that are advantageous for deep learning-based medical imaging tasks. Medical images can be augmented by injecting semantic context into the underlying classification mechanism, increasing the information density of the scan and ultimately can provide more trust in the result. This work considers an application of semantic AI to segment tissue types from excised breast tumors imaged with pulsed terahertz (THz)-an emerging imaging technology. Prior work has demonstrated traditional data driven methodology for deep learning on THz has two key weaknesses: namely 1) low image resolution compared to other state-of-the-art imaging techniques and 2) a lack of expertly-labeled images due to domain transformation and tissue changes during histopathology. This work seeks to address these limitations through two semantic AI mechanisms. Specifically, we introduce a two stage pipeline using an unsupervised image-to-image translation network and a supervised segmentation network. The combination of these contributions enables enhanced near-real-time visualization of excised tissue through THz scans and a supervised segmentation and classification training strategy using only synthetic THz scans generated by our bi-directional image-to-image translation network.
语义人工智能具有某些特性,这些特性对于基于深度学习的医学成像任务具有优势。通过将语义上下文注入底层分类机制,可以增强医学图像,提高扫描的信息密度,并最终为结果提供更高的可信度。这项工作考虑了语义人工智能在从用脉冲太赫兹(THz)成像的切除乳腺肿瘤中分割组织类型的应用——THz是一种新兴的成像技术。先前的工作表明,用于太赫兹深度学习的传统数据驱动方法有两个关键弱点:即1)与其他先进成像技术相比图像分辨率低,以及2)由于组织病理学过程中的域转换和组织变化而缺乏专家标注的图像。这项工作旨在通过两种语义人工智能机制来解决这些限制。具体来说,我们引入了一个两阶段的流程,使用无监督图像到图像转换网络和监督分割网络。这些贡献的结合能够通过太赫兹扫描增强切除组织的近实时可视化,并使用仅由我们的双向图像到图像转换网络生成的合成太赫兹扫描进行监督分割和分类训练策略。