Chavez Tanny, Bowman Tyler, Wu Jingxian, Bailey Keith, El-Shenawee Magda
University of Arkansas, Fayetteville, AR 72701 USA,
Oklahoma Animal Disease Diagnostic Laboratory, Oklahoma State University, Stillwater,OK, 74076 USA,
J Infrared Millim Terahertz Waves. 2018 Dec;39(12):1283-1302. doi: 10.1007/s10762-018-0529-8. Epub 2018 Aug 9.
This paper presents an image morphing algorithm for quantitative evaluation methodology of terahertz (THz) images of excised breast cancer tumors. Most current studies on the assessment of THz imaging rely on qualitative evaluation, and there is no established benchmark or procedure to quantify the THz imaging performance. The proposed morphing algorithm provides a tool to quantitatively align the THz image with the histopathology image. Freshly excised xenograft murine breast cancer tumors are imaged using the pulsed THz imaging and spectroscopy system in the reflection mode. Upon fixing the tumor tissue in formalin and embedding in paraffin, an FFPE tissue block is produced. A thin slice of the block is prepared for the pathology image while another THz reflection image is produced directly from the block. We developed an algorithm of mesh morphing using homography mapping of the histopathology image to adjust the alignment, shape, and resolution to match the external contour of the tissue in the THz image. Unlike conventional image morphing algorithms that rely on internal features of the source and target images, only the external contour of the tissue is used to avoid bias. Unsupervised Bayesian learning algorithm is applied to THz images to classify the tissue regions of cancer, fat, and muscles present in xenograft breast tumors. The results demonstrate that the proposed mesh morphing algorithm can provide more effective and accurate evaluation of THz imaging compared with existing algorithms. The results also showed that while THz images of FFPE tissue are highly in agreement with pathology images, challenges remain in assessing THz imaging of fresh tissue.
本文提出了一种用于对切除的乳腺癌肿瘤太赫兹(THz)图像进行定量评估的图像变形算法。目前大多数关于太赫兹成像评估的研究依赖于定性评估,并且没有既定的基准或程序来量化太赫兹成像性能。所提出的变形算法提供了一种将太赫兹图像与组织病理学图像进行定量对齐的工具。使用脉冲太赫兹成像和光谱系统在反射模式下对新鲜切除的异种移植小鼠乳腺癌肿瘤进行成像。将肿瘤组织固定在福尔马林中并包埋在石蜡中后,制成一个FFPE组织块。为病理图像制备该组织块的薄片,同时直接从该组织块生成另一张太赫兹反射图像。我们开发了一种使用组织病理学图像的单应性映射的网格变形算法,以调整对齐、形状和分辨率,使其与太赫兹图像中组织的外部轮廓相匹配。与依赖于源图像和目标图像内部特征的传统图像变形算法不同,这里仅使用组织的外部轮廓以避免偏差。将无监督贝叶斯学习算法应用于太赫兹图像,以对异种移植乳腺肿瘤中存在的癌、脂肪和肌肉组织区域进行分类。结果表明,与现有算法相比,所提出的网格变形算法可以对太赫兹成像提供更有效和准确的评估。结果还表明,虽然FFPE组织的太赫兹图像与病理图像高度一致,但在评估新鲜组织的太赫兹成像方面仍存在挑战。