Suppr超能文献

药物依从性中的情感分析:运用基于规则和人工智能驱动的算法来理解患者的用药体验。

Sentiment analysis in medication adherence: using ruled-based and artificial intelligence-driven algorithms to understand patient medication experiences.

作者信息

Bottacin Wallace Entringer, Luquetta Alexandre, Gomes-Jr Luiz, de Souza Thais Teles, Reis Walleri Christini Torelli, Melchiors Ana Carolina

机构信息

Postgraduate Program in Pharmaceutical Services and Policies, Federal University of Paraná, Avenida Prefeito Lothário Meissner, 632 - Jardim Botânico, Curitiba, CEP 80210-170, PR, Brazil.

Postgraduate Program in Applied Computing, Federal Technological University of Paraná, Curitiba, PR, Brazil.

出版信息

Int J Clin Pharm. 2024 Oct 4. doi: 10.1007/s11096-024-01803-0.

Abstract

BACKGROUND

Studies are exploring ways to improve medication adherence, with sentiment analysis (SA) being an underutilized innovation in pharmacy. This technique uses artificial intelligence (AI) and natural language processing to assess text for underlying feelings and emotions.

AIM

This study aimed to evaluate the use of two SA models, Valence Aware Dictionary for Sentiment Reasoning (VADER) and Emotion English DistilRoBERTa-base (DistilRoBERTa), for the identification of patients' sentiments and emotions towards their pharmacotherapy.

METHOD

A dataset containing 320,095 anonymized patients' reports of experiences with their medication was used. VADER assessed sentiment polarity on a scale from - 1 (negative) to + 1 (positive). DistilRoBERTa classified emotions into seven categories: anger, disgust, fear, joy, neutral, sadness, and surprise. Performance metrics for the models were obtained using the sklearn.metrics module of scikit-learn in Python.

RESULTS

VADER demonstrated an overall accuracy of 0.70. For negative sentiments, it achieved a precision of 0.68, recall of 0.80, and an F1-score of 0.73, while for positive sentiments, it had a precision of 0.73, recall of 0.59, and an F1-score of 0.65. The AUC for the ROC curve was 0.90. DistilRoBERTa analysis showed that higher ratings for medication effectiveness, ease of use, and satisfaction corresponded with more positive emotional responses. These results were consistent with VADER's sentiment analysis, confirming the reliability of both models.

CONCLUSION

VADER and DistilRoBERTa effectively analyzed patients' sentiments towards pharmacotherapy, providing valuable information. These findings encourage studies of SA in clinical pharmacy practice, paving the way for more personalized and effective patient care strategies.

摘要

背景

多项研究正在探索提高药物治疗依从性的方法,情感分析(SA)在药学领域是一项未得到充分利用的创新技术。该技术利用人工智能(AI)和自然语言处理来评估文本中潜在的情感和情绪。

目的

本研究旨在评估两种情感分析模型,即情感推理效价感知词典(VADER)和情感英语蒸馏版罗伯塔基础模型(DistilRoBERTa),用于识别患者对其药物治疗的情感和情绪。

方法

使用了一个包含320,095份匿名患者用药体验报告的数据集。VADER在从-1(负面)到+1(正面)的量表上评估情感极性。DistilRoBERTa将情绪分为七类:愤怒、厌恶、恐惧、喜悦、中性、悲伤和惊讶。使用Python中scikit-learn的sklearn.metrics模块获得模型的性能指标。

结果

VADER的总体准确率为0.70。对于负面情绪,其精确率为0.68,召回率为0.80,F1分数为0.73;而对于正面情绪,其精确率为0.73,召回率为0.59,F1分数为0.65。ROC曲线的AUC为0.90。DistilRoBERTa分析表明,对药物疗效、易用性和满意度的评分越高,对应的积极情绪反应就越多。这些结果与VADER的情感分析一致,证实了两种模型的可靠性。

结论

VADER和DistilRoBERTa有效地分析了患者对药物治疗的情感,提供了有价值的信息。这些发现鼓励在临床药学实践中开展情感分析研究,为更个性化和有效的患者护理策略铺平道路。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验