Suppr超能文献

利用零弹性能量模式实现光控移动。

Light-steerable locomotion using zero-elastic-energy modes.

作者信息

Deng Zixuan, Li Kai, Priimagi Arri, Zeng Hao

机构信息

Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland.

Department of Civil Engineering, Anhui Jianzhu University, Hefei, China.

出版信息

Nat Mater. 2024 Dec;23(12):1728-1735. doi: 10.1038/s41563-024-02026-4. Epub 2024 Oct 4.

Abstract

Driving synthetic materials out of equilibrium via dissipative mechanisms paves the way towards autonomous, self-sustained robotic motions. However, obtaining agile movement in diverse environments with dynamic steerability remains a challenge. Here we report a light-fuelled soft liquid crystal elastomer torus with self-sustained out-of-equilibrium movement. Under constant light excitation, the torus undergoes spontaneous rotation arising from the formation of zero-elastic-energy modes. By exploiting dynamic friction or drag, the zero-elastic-energy-mode-based locomotion direction can be optically controlled in various dry and fluid environments. We demonstrate the ability of the liquid crystal elastomer torus to laterally and vertically swim in the Stokes regime. The torus navigation can be extended to three-dimensional space with full steerability of the swimming direction. These results demonstrate the possibilities enabled by prestrained topological structures towards robotic functions of out-of-equilibrium soft matter.

摘要

通过耗散机制使合成材料偏离平衡态,为实现自主、自我维持的机器人运动铺平了道路。然而,在具有动态可控性的多样化环境中实现敏捷运动仍然是一项挑战。在此,我们报道了一种具有自我维持的非平衡运动的光驱动软液晶弹性体环面。在恒定光激发下,环面由于零弹性能模式的形成而发生自发旋转。通过利用动态摩擦或阻力,基于零弹性能模式的运动方向可以在各种干燥和流体环境中通过光学方式进行控制。我们展示了液晶弹性体环面在斯托克斯 regime 中横向和垂直游动的能力。环面导航可以扩展到三维空间,实现游泳方向的完全可控性。这些结果证明了预应变拓扑结构对于非平衡软物质机器人功能的可能性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0e9b/11599032/08bf8ffd0587/41563_2024_2026_Fig1_HTML.jpg

相似文献

1
Light-steerable locomotion using zero-elastic-energy modes.
Nat Mater. 2024 Dec;23(12):1728-1735. doi: 10.1038/s41563-024-02026-4. Epub 2024 Oct 4.
2
Multimodal Autonomous Locomotion of Liquid Crystal Elastomer Soft Robot.
Adv Sci (Weinh). 2024 Jun;11(23):e2402358. doi: 10.1002/advs.202402358. Epub 2024 Mar 23.
3
Self-Sustained Liquid Crystal Elastomer Actuators with Geometric Zero-Elastic-Energy Modes.
Macromol Rapid Commun. 2025 Aug;46(15):e2500134. doi: 10.1002/marc.202500134. Epub 2025 Apr 18.
4
Emergent Locomotion in Self-Sustained, Mechanically Connected Soft Matter Rings.
Adv Mater. 2025 Jul;37(26):e2503519. doi: 10.1002/adma.202503519. Epub 2025 Apr 30.
5
Elastic-instability-enabled locomotion.
Proc Natl Acad Sci U S A. 2021 Feb 23;118(8). doi: 10.1073/pnas.2013801118.
7
8
Light-Driven, Caterpillar-Inspired Miniature Inching Robot.
Macromol Rapid Commun. 2018 Jan;39(1). doi: 10.1002/marc.201700224. Epub 2017 May 31.
9
Light-Fueled Nonreciprocal Self-Oscillators for Fluidic Transportation and Coupling.
Adv Mater. 2024 Mar;36(12):e2209683. doi: 10.1002/adma.202209683. Epub 2023 Jan 3.
10
Self-sustained eversion or inversion of a thermally responsive torus.
Phys Rev E. 2021 Mar;103(3-1):033004. doi: 10.1103/PhysRevE.103.033004.

引用本文的文献

1
A light-fueled self-oscillator that senses force.
Commun Mater. 2025;6(1):173. doi: 10.1038/s43246-025-00903-2. Epub 2025 Aug 5.
2
Welding complex-shaped actuators from dynamic liquid crystal elastomers.
J Mater Chem C Mater. 2025 May 21. doi: 10.1039/d5tc01194a.
3
Supramolecular Chalcogen-Bonded Shape Memory Actuators.
Angew Chem Int Ed Engl. 2025 Jul 21;64(30):e202508101. doi: 10.1002/anie.202508101. Epub 2025 Jun 1.
4
Emergent Locomotion in Self-Sustained, Mechanically Connected Soft Matter Rings.
Adv Mater. 2025 Jul;37(26):e2503519. doi: 10.1002/adma.202503519. Epub 2025 Apr 30.
5
A Light-Steered Self-Rowing Liquid Crystal Elastomer-Based Boat.
Polymers (Basel). 2025 Mar 7;17(6):711. doi: 10.3390/polym17060711.
6
Self-Oscillation of Liquid Crystal Elastomer Fiber-Slide System Driven by Self-Flickering Light Source.
Polymers (Basel). 2024 Nov 26;16(23):3298. doi: 10.3390/polym16233298.

本文引用的文献

1
Defected twisted ring topology for autonomous periodic flip-spin-orbit soft robot.
Proc Natl Acad Sci U S A. 2024 Jan 16;121(3):e2312680121. doi: 10.1073/pnas.2312680121. Epub 2024 Jan 9.
2
Animating hydrogel knotbots with topology-invoked self-regulation.
Nat Commun. 2024 Jan 5;15(1):300. doi: 10.1038/s41467-023-44608-x.
3
Feedback-controlled hydrogels with homeostatic oscillations and dissipative signal transduction.
Nat Nanotechnol. 2022 Dec;17(12):1303-1310. doi: 10.1038/s41565-022-01241-x. Epub 2022 Nov 28.
4
Self-regulated non-reciprocal motions in single-material microstructures.
Nature. 2022 May;605(7908):76-83. doi: 10.1038/s41586-022-04561-z. Epub 2022 May 4.
5
Light-powered soft steam engines for self-adaptive oscillation and biomimetic swimming.
Sci Robot. 2021 Dec;6(61):eabi4523. doi: 10.1126/scirobotics.abi4523. Epub 2021 Dec 1.
6
The rise of intelligent matter.
Nature. 2021 Jun;594(7863):345-355. doi: 10.1038/s41586-021-03453-y. Epub 2021 Jun 16.
7
Light-driven continuous rotating Möbius strip actuators.
Nat Commun. 2021 Apr 20;12(1):2334. doi: 10.1038/s41467-021-22644-9.
8
Chemical pumps and flexible sheets spontaneously form self-regulating oscillators in solution.
Proc Natl Acad Sci U S A. 2021 Mar 23;118(12). doi: 10.1073/pnas.2022987118.
9
Soft phototactic swimmer based on self-sustained hydrogel oscillator.
Sci Robot. 2019 Aug 21;4(33). doi: 10.1126/scirobotics.aax7112.
10
A vision for future bioinspired and biohybrid robots.
Sci Robot. 2020 Jan 22;5(38). doi: 10.1126/scirobotics.aba6893.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验