Suppr超能文献

基于具有风格迁移的 GAN 模型聚合的脑肿瘤图像生成。

Brain tumor image generation using an aggregation of GAN models with style transfer.

机构信息

Department of Computer Science and Engineering, Jadavpur University, Kolkata, 700032, India.

Department of Electrical Engineering, Jadavpur University, Kolkata, 700032, India.

出版信息

Sci Rep. 2022 Jun 1;12(1):9141. doi: 10.1038/s41598-022-12646-y.

Abstract

In the recent past, deep learning-based models have achieved tremendous success in computer vision-related tasks with the help of large-scale annotated datasets. An interesting application of deep learning is synthetic data generation, especially in the domain of medical image analysis. The need for such a task arises due to the scarcity of original data. Class imbalance is another reason for applying data augmentation techniques. Generative Adversarial Networks (GANs) are beneficial for synthetic image generation in various fields. However, stand-alone GANs may only fetch the localized features in the latent representation of an image, whereas combining different GANs might understand the distributed features. To this end, we have proposed AGGrGAN, an aggregation of three base GAN models-two variants of Deep Convolutional Generative Adversarial Network (DCGAN) and a Wasserstein GAN (WGAN) to generate synthetic MRI scans of brain tumors. Further, we have applied the style transfer technique to enhance the image resemblance. Our proposed model efficiently overcomes the limitation of data unavailability and can understand the information variance in multiple representations of the raw images. We have conducted all the experiments on the two publicly available datasets - the brain tumor dataset and the Multimodal Brain Tumor Segmentation Challenge (BraTS) 2020 dataset. Results show that the proposed model can generate fine-quality images with maximum Structural Similarity Index Measure (SSIM) scores of 0.57 and 0.83 on the said two datasets.

摘要

在最近的一段时间里,借助于大规模标注数据集,基于深度学习的模型在计算机视觉相关任务中取得了巨大的成功。深度学习的一个有趣应用是合成数据生成,特别是在医学图像分析领域。由于原始数据的稀缺,因此需要这样的任务。类不平衡是应用数据增强技术的另一个原因。生成对抗网络(GAN)在各个领域都有利于合成图像生成。然而,独立的 GAN 可能只能获取图像潜在表示中的局部特征,而结合不同的 GAN 则可能理解分布式特征。为此,我们提出了 AGGrGAN,这是三个基础 GAN 模型的聚合体——两个深度卷积生成对抗网络(DCGAN)变体和一个 Wasserstein GAN(WGAN),用于生成脑肿瘤的合成 MRI 扫描。此外,我们还应用了风格迁移技术来增强图像的相似性。我们提出的模型有效地克服了数据不可用的限制,并能够理解原始图像的多个表示中的信息变化。我们在两个公开可用的数据集上进行了所有实验——脑肿瘤数据集和多模态脑肿瘤分割挑战赛(BraTS)2020 数据集。结果表明,所提出的模型可以生成高质量的图像,在上述两个数据集上的最大结构相似性指数度量(SSIM)得分分别为 0.57 和 0.83。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4383/9160042/713bb8c3c2b6/41598_2022_12646_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验