Suppr超能文献

利用深度学习方法对 HIV-1 M 组亚型进行分类。

HIV-1 M group subtype classification using deep learning approach.

机构信息

Department of Epidemiology and Biostatistics, College of Public Health, University of Georgia, Athens, GA, 30602, United States.

出版信息

Comput Biol Med. 2024 Dec;183:109218. doi: 10.1016/j.compbiomed.2024.109218. Epub 2024 Oct 5.

Abstract

Traditionally, the classification of HIV-1 M group subtypes has depended on statistical methods constrained by sample sizes. Here HIV-1-M-SPBEnv was proposed as the first deep learning-based method for classifying HIV-1 M group subtypes via env gene sequences. This approach overcomes sample size challenges by utilizing artificial molecular evolution techniques to generate a synthetic dataset suitable for machine learning. Employing a convolutional Autoencoder embedded with two residual blocks and two transpose residual blocks, followed by a full connected neural network block, HIV-1-M-SPBEnv simplifies complex, high-dimensional DNA sequence data into concise, information-rich, low-dimensional representations, achieving exceptional classification accuracy. Through independent data set validation, the precision, accuracy, recall and F1 score of the HIV-1-M-SPBEnv model predictions were all 100 %, confirming its capability to accurately identify all 12 subtypes of the HIV-1 M group. Deployed through a web server, it provides seamless HIV-1 M group subtype prediction capabilities for researchers and clinicians. HIV-1-M-SPBEnv web server is accessible at http://www.hivsubclass.com and all the code is available at https://github.com/pengsihua2023/HIV-1-M-SPBEnv.

摘要

传统上,HIV-1 M 组亚型的分类依赖于受样本大小限制的统计方法。在这里,我们提出了 HIV-1-M-SPBEnv,这是一种基于深度学习的方法,通过 env 基因序列对 HIV-1 M 组亚型进行分类。该方法通过利用人工分子进化技术生成适合机器学习的合成数据集,克服了样本大小的挑战。HIV-1-M-SPBEnv 采用卷积自动编码器,嵌入两个残差块和两个转置残差块,然后是一个全连接神经网络块,将复杂的高维 DNA 序列数据简化为简洁的、信息丰富的低维表示,实现了出色的分类准确性。通过独立数据集验证,HIV-1-M-SPBEnv 模型预测的精度、准确性、召回率和 F1 得分均达到 100%,证实了其能够准确识别 HIV-1 M 组的所有 12 种亚型的能力。通过 Web 服务器部署,它为研究人员和临床医生提供了无缝的 HIV-1 M 组亚型预测功能。HIV-1-M-SPBEnv Web 服务器可在 http://www.hivsubclass.com 访问,所有代码可在 https://github.com/pengsihua2023/HIV-1-M-SPBEnv 获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验