Laboratory of Neurobiology of Aging, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Huechuraba, Santiago 8580702, Chile; Facultad de Medicina y Ciencia, Universidad San Sebastián, Lota 2465, Santiago 7510157, Chile.
Laboratory of Neurobiology of Aging, Centro Científico y Tecnológico de Excelencia Ciencia & Vida, Fundación Ciencia & Vida, Huechuraba, Santiago 8580702, Chile; Facultad de Medicina y Ciencia, Universidad San Sebastián, Lota 2465, Santiago 7510157, Chile.
Ageing Res Rev. 2024 Nov;101:102524. doi: 10.1016/j.arr.2024.102524. Epub 2024 Oct 5.
Aging is a multifaceted biological process characterized by progressive molecular and cellular damage accumulation. The brain hippocampus undergoes functional deterioration with age, caused by cellular deficits, decreased synaptic communication, and neuronal death, ultimately leading to memory impairment. One of the factors contributing to this dysfunction is the loss of mitochondrial function. In neurons, mitochondria are categorized into synaptic and non-synaptic pools based on their location. Synaptic mitochondria, situated at the synapses, play a crucial role in maintaining neuronal function and synaptic plasticity, whereas non-synaptic mitochondria are distributed throughout other neuronal compartments, supporting overall cellular metabolism and energy supply. The proper function of synaptic mitochondria is essential for synaptic transmission as they provide the energy required and regulate calcium homeostasis at the communication sites between neurons. Maintaining the structure and functionality of synaptic mitochondria involves intricate processes, including mitochondrial dynamics such as fission, fusion, transport, and quality control mechanisms. These processes ensure that mitochondria remain functional, replace damaged organelles, and sustain cellular homeostasis at synapses. Notably, deficiencies in these mechanisms have been increasingly associated with aging and the onset of age-related neurodegenerative diseases. Synaptic mitochondria from the hippocampus are particularly vulnerable to age-related changes, including alterations in morphology and a decline in functionality, which significantly contribute to decreased synaptic activity during aging. This review comprehensively explores the critical roles that mitochondrial dynamics and quality control mechanisms play in preserving synaptic activity and neuronal function. It emphasizes the emerging evidence linking the deterioration of synaptic mitochondria to the aging process and the development of neurodegenerative diseases, highlighting the importance of these organelles from hippocampal neurons as potential therapeutic targets for mitigating cognitive decline and synaptic degeneration associated with aging. The novelty of this review lies in its focus on the unique vulnerability of hippocampal synaptic mitochondria to aging, underscoring their importance in maintaining brain function across the lifespan.
衰老是一个多方面的生物学过程,其特征是渐进性的分子和细胞损伤积累。大脑海马区随着年龄的增长而发生功能恶化,这是由细胞缺陷、突触通讯减少和神经元死亡引起的,最终导致记忆障碍。导致这种功能障碍的因素之一是线粒体功能的丧失。在神经元中,根据其位置,线粒体可分为突触和非突触池。位于突触处的突触线粒体在维持神经元功能和突触可塑性方面起着至关重要的作用,而分布在其他神经元区室中的非突触线粒体则支持整体细胞代谢和能量供应。突触线粒体的正常功能对于突触传递至关重要,因为它们提供所需的能量并调节神经元之间通讯部位的钙稳态。维持突触线粒体的结构和功能涉及复杂的过程,包括线粒体动力学,如分裂、融合、运输和质量控制机制。这些过程确保线粒体保持功能,替换受损的细胞器,并维持突触处的细胞内稳态。值得注意的是,这些机制的缺陷与衰老和与年龄相关的神经退行性疾病的发生越来越相关。来自海马体的突触线粒体特别容易受到与年龄相关的变化的影响,包括形态改变和功能下降,这些变化显著导致衰老过程中突触活性的降低。这篇综述全面探讨了线粒体动力学和质量控制机制在维持突触活性和神经元功能方面的关键作用。它强调了这些机制的恶化与突触线粒体衰老过程和神经退行性疾病发展之间的新兴联系,突出了海马神经元中这些细胞器作为减轻与衰老相关的认知能力下降和突触退化的潜在治疗靶点的重要性。本综述的新颖之处在于它专注于海马体突触线粒体对衰老的独特易感性,强调了它们在维持整个生命过程中的大脑功能方面的重要性。