Suppr超能文献

基于人工智能的面部骨折诊断评估及其与传统影像诊断相比的优势:一项系统评价和荟萃分析

Evaluation of Artificial Intelligence-based diagnosis for facial fractures, advantages compared with conventional imaging diagnosis: a systematic review and meta-analysis.

作者信息

Ju Jiangyi, Qu Zhen, Qing Han, Ding Yunxia, Peng Lihua

机构信息

Bishan Hospital of Chongqing medical university, (Bishan Hospital of Chongqing), No. 9 Shuangxing Avenue, Bishan District, Chongqing, China.

出版信息

BMC Musculoskelet Disord. 2025 Jul 15;26(1):682. doi: 10.1186/s12891-025-08842-2.

Abstract

BACKGROUND

Currently, the application of convolutional neural networks (CNNs) in artificial intelligence (AI) for medical imaging diagnosis has emerged as a highly promising tool. In particular, AI-assisted diagnosis holds significant potential for orthopedic and emergency department physicians by improving diagnostic efficiency and enhancing the overall patient experience. This systematic review and meta-analysis has the objective of assessing the application of AI in diagnosing facial fractures and evaluating its diagnostic performance.

METHODS

This study adhered to the guidelines of the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) and PRISMA-Diagnostic Test Accuracy (PRISMA-DTA). A comprehensive literature search was conducted in the PubMed, Cochrane Library, and Web of Science databases to identify original articles published up to December 2024. The risk of bias and applicability of the included studies were assessed using the QUADAS-2 tool. The results were analyzed using a Summary Receiver Operating Characteristic (SROC) curve.

RESULTS

A total of 16 studies were included in the analysis, with contingency tables extracted from 11 of them. The pooled sensitivity was 0.889 (95% CI: 0.844-0.922), and the pooled specificity was 0.888 (95% CI: 0.834-0.926). The area under the Summary Receiver Operating Characteristic (SROC) curve was 0.911. In the subgroup analysis of nasal and mandibular fractures, the pooled sensitivity for nasal fractures was 0.851 (95% CI: 0.806-0.887), and the pooled specificity was 0.883 (95% CI: 0.862-0.902). For mandibular fractures, the pooled sensitivity was 0.905 (95% CI: 0.836-0.947), and the pooled specificity was 0.895 (95% CI: 0.824-0.940).

CONCLUSIONS

AI can be developed as an auxiliary tool to assist clinicians in diagnosing facial fractures. The results demonstrate high overall sensitivity and specificity, along with a robust performance reflected by the high area under the SROC curve.

CLINICAL TRIAL NUMBER

This study has been prospectively registered on Prospero, ID:CRD42024618650, Creat Date:10 Dec 2024. https://www.crd.york.ac.uk/PROSPERO/view/CRD42024618650 .

摘要

背景

目前,卷积神经网络(CNN)在人工智能(AI)医学影像诊断中的应用已成为一种极具前景的工具。特别是,AI辅助诊断通过提高诊断效率和提升患者整体体验,对骨科和急诊科医生具有巨大潜力。本系统评价和荟萃分析旨在评估AI在诊断面部骨折中的应用及其诊断性能。

方法

本研究遵循系统评价和荟萃分析的首选报告项目(PRISMA)及PRISMA诊断试验准确性(PRISMA-DTA)指南。在PubMed、Cochrane图书馆和Web of Science数据库中进行了全面的文献检索,以识别截至2024年12月发表的原始文章。使用QUADAS-2工具评估纳入研究的偏倚风险和适用性。结果采用汇总受试者工作特征(SROC)曲线进行分析。

结果

共有16项研究纳入分析,其中11项研究提取了列联表。汇总敏感度为0.889(95%CI:0.844-0.922),汇总特异度为0.888(95%CI:0.834-0.926)。汇总受试者工作特征(SROC)曲线下面积为0.911。在鼻骨和下颌骨骨折的亚组分析中,鼻骨骨折的汇总敏感度为0.851(95%CI:0.806-0.887),汇总特异度为0.883(95%CI:0.862-0.902)。下颌骨骨折的汇总敏感度为0.905(95%CI:0.836-0.947),汇总特异度为0.895(95%CI:0.824-0.940)。

结论

AI可开发为辅助工具,协助临床医生诊断面部骨折。结果显示总体敏感度和特异度较高,SROC曲线下面积较高也反映了其强大的性能。

临床试验编号

本研究已在Prospero上进行前瞻性注册,ID:CRD42024618650,创建日期:2024年12月10日。https://www.crd.york.ac.uk/PROSPERO/view/CRD42024618650

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验