Suppr超能文献

使用人工智能智能手表心电图监测血清钾水平

Serum Potassium Monitoring Using AI-Enabled Smartwatch Electrocardiograms.

作者信息

Chiu I-Min, Wu Po-Jung, Zhang Huan, Hughes J Weston, Rogers Albert J, Jalilian Laleh, Perez Marco, Lin Chun-Hung Richard, Lee Chien-Te, Zou James, Ouyang David

机构信息

Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA; Department of Emergency Medicine, Chang Gung Memorial Hospital Kaohsiung Branch, Kaohsiung, Taiwan; Department of Computer Science and Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan.

Division of Nephrology, Department of Internal Medicine, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan.

出版信息

JACC Clin Electrophysiol. 2024 Dec;10(12):2644-2654. doi: 10.1016/j.jacep.2024.07.023. Epub 2024 Oct 9.

Abstract

BACKGROUND

Hyperkalemia, characterized by elevated serum potassium levels, heightens the risk of sudden cardiac death, particularly increasing risk for individuals with chronic kidney disease and end-stage renal disease (ESRD). Traditional laboratory test monitoring is resource-heavy, invasive, and unable to provide continuous tracking. Wearable technologies like smartwatches with electrocardiogram (ECG) capabilities are emerging as valuable tools for remote monitoring, potentially allowing for personalized monitoring with artificial intelligence (AI)-ECG interpretation.

OBJECTIVES

The purpose of this study was to develop an AI-ECG algorithm to predict serum potassium level in ESRD patients with smartwatch-generated ECG waveforms.

METHODS

A cohort of 152,508 patients with 293,557 ECGs paired serum potassium levels obtained within 1 hour at Cedars Sinai Medical Center was used to train an AI-ECG model ("Kardio-Net") to predict serum potassium level. The model was further fine-tuned on 4,337 ECGs from 1,463 patients with ESRD using inputs from 12- and single-lead ECGs. Kardio-Net was evaluated in held-out test cohorts from Cedars Sinai Medical Center and Stanford Healthcare (SHC) as well as a prospective international cohort of 40 ESRD patients with smartwatch ECGs at Chang Gung Memorial Hospital.

RESULTS

The Kardio-Net, when applied to 12-lead ECGs, identified severe hyperkalemia (>6.5 mEq/L) with an AUC of 0.852 (95% CI: 0.745-0.956) and a mean absolute error (MAE) of 0.527 mEq/L. In external validation at SHC, the model achieved an AUC of 0.849 (95% CI: 0.823-0.875) and an MAE of 0.599 mEq/L. For single-lead ECGs, Kardio-Net detected severe hyperkalemia with an AUC of 0.876 (95% CI: 0.765-0.987) in the primary cohort and had an MAE of 0.575 mEq/L. In the external SHC validation, the AUC was 0.807 (95% CI: 0.778-0.835) with an MAE of 0.740 mEq/L. Using prospectively obtained smartwatch data, the AUC was 0.831 (95% CI: 0.693-0.975), with an MAE of 0.580 mEq/L.

CONCLUSIONS

We validate a deep learning model to predict serum potassium levels from both 12-lead ECGs and single-lead smartwatch data, demonstrating its utility for remote monitoring of hyperkalemia.

摘要

背景

高钾血症以血清钾水平升高为特征,会增加心源性猝死风险,尤其是慢性肾脏病和终末期肾病(ESRD)患者的风险更高。传统实验室检测监测资源消耗大、具有侵入性且无法进行连续跟踪。具有心电图(ECG)功能的智能手表等可穿戴技术正在成为远程监测的重要工具,借助人工智能(AI)心电图解读有可能实现个性化监测。

目的

本研究旨在开发一种AI-ECG算法,以根据智能手表生成的ECG波形预测ESRD患者的血清钾水平。

方法

在雪松西奈医疗中心,对152,508例患者的293,557份ECG及1小时内测得的配对血清钾水平进行队列研究,用于训练AI-ECG模型(“Kardio-Net”)以预测血清钾水平。利用12导联和单导联ECG的输入数据,在1,463例ESRD患者的4,337份ECG上对该模型进行进一步微调。在雪松西奈医疗中心和斯坦福医疗保健(SHC)的保留测试队列以及长庚纪念医院40例有智能手表ECG的ESRD患者的前瞻性国际队列中对Kardio-Net进行评估。

结果

将Kardio-Net应用于12导联ECG时,识别严重高钾血症(>6.5 mEq/L)的曲线下面积(AUC)为0.852(95%置信区间:0.745 - 0.956),平均绝对误差(MAE)为0.527 mEq/L。在SHC的外部验证中,该模型的AUC为0.849(95%置信区间:0.823 - 0.875),MAE为0.599 mEq/L。对于单导联ECG,Kardio-Net在主要队列中检测严重高钾血症的AUC为0.876(95%置信区间:0.765 - 0.987),MAE为0.575 mEq/L。在SHC的外部验证中,AUC为0.807(95%置信区间:0.778 - 0.835),MAE为0.740 mEq/L。使用前瞻性获取的智能手表数据,AUC为0.831(95%置信区间:0.693 - 0.975),MAE为0.580 mEq/L。

结论

我们验证了一种深度学习模型,可根据12导联ECG和单导联智能手表数据预测血清钾水平,证明其在远程监测高钾血症方面的实用性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验