Suppr超能文献

人工智能增强型心电图可识别射血分数正常但预后较差风险的患者。

Artificial Intelligence-Enhanced Electrocardiography Identifies Patients With Normal Ejection Fraction at Risk of Worse Outcomes.

作者信息

Naser Jwan A, Lee Eunjung, Lopez-Jimenez Francisco, Noseworthy Peter A, Latif Omar S, Friedman Paul A, Lin Grace, Oh Jae K, Scott Christopher G, Pislaru Sorin V, Attia Zachi I, Pellikka Patricia A

机构信息

Department of Cardiovascular Medicine, Mayo Clinic, Rochester, Minnesota, USA.

Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, USA.

出版信息

JACC Adv. 2024 Aug 28;3(9):101179. doi: 10.1016/j.jacadv.2024.101179. eCollection 2024 Sep.

Abstract

BACKGROUND

An artificial intelligence (AI)-based electrocardiogram (ECG) model identifies patients with a higher likelihood of low ejection fraction (EF). Patients with an abnormal AI-ECG score but normal EF (false positives; FP) more often developed future low EF.

OBJECTIVE

The purpose of this study was to evaluate echocardiographic characteristics and all-cause mortality risk in FP patients.

METHODS

Patients with transthoracic echocardiography and ECG were classified retrospectively into FP, true negatives (TN) (EF ≥50%, normal AI-ECG), true positives (TP) (EF <50%, abnormal AI-ECG), or false negatives (FN) (EF <50%, normal AI-ECG). Echocardiographic abnormalities included systolic and diastolic left ventricular function, valve disease, estimated pulmonary pressures, and right heart parameters. Cox regression was used to assess factors associated with all-cause mortality.

RESULTS

Of 100,586 patients (median age 63 years; 45.5% females), 79% were TN, 7% FP, 5% FN, and 8% TP. FPs had more echocardiographic abnormalities than TN but less than FN or TP patients. An echocardiographic abnormality was present in 97% of FPs. Over median 2.7 years, FPs had increased mortality risk (age and sex-adjusted HR: 1.64 [95% CI: 1.55-1.73]) vs TN. Age and sex-adjusted mortality was higher in FP with abnormal echocardiography than FP with normal echocardiography and to TN regardless of echocardiography result; FP with normal echocardiography had comparable mortality risk to TN with abnormal echocardiography.

CONCLUSIONS

FP patients were more likely than TNs to have echocardiographic abnormalities with 97% of exams showing an abnormality. FP patients had higher mortality rates, especially when their echocardiograms also had an abnormality; the concomitant use of AI ECG and echocardiography helps in stratifying risk in patients with normal LVEF.

摘要

背景

基于人工智能(AI)的心电图(ECG)模型可识别出射血分数(EF)较低可能性较高的患者。AI-ECG评分异常但EF正常的患者(假阳性;FP)未来更常出现低EF。

目的

本研究旨在评估FP患者的超声心动图特征和全因死亡风险。

方法

对接受经胸超声心动图和心电图检查的患者进行回顾性分类,分为FP、真阴性(TN)(EF≥50%,AI-ECG正常)、真阳性(TP)(EF<50%,AI-ECG异常)或假阴性(FN)(EF<50%,AI-ECG正常)。超声心动图异常包括左心室收缩和舒张功能、瓣膜疾病、估计的肺压力和右心参数。采用Cox回归评估与全因死亡相关的因素。

结果

在100586例患者(中位年龄63岁;45.5%为女性)中,79%为TN,7%为FP,5%为FN,8%为TP。FP患者的超声心动图异常比TN患者多,但比FN或TP患者少。97%的FP患者存在超声心动图异常。在中位2.7年的时间里,与TN相比,FP患者的死亡风险增加(年龄和性别调整后的HR:1.64[95%CI:1.55-1.73])。无论超声心动图结果如何,超声心动图异常的FP患者的年龄和性别调整后的死亡率均高于超声心动图正常的FP患者和TN患者;超声心动图正常的FP患者的死亡风险与超声心动图异常的TN患者相当。

结论

与TN患者相比,FP患者更有可能出现超声心动图异常,97%的检查显示异常。FP患者的死亡率较高,尤其是当他们的超声心动图也有异常时;同时使用AI心电图和超声心动图有助于对左心室射血分数正常的患者进行风险分层。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9bea/11450892/3f8bebe43548/ga1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验