Department of Cardiovascular Medicine, Mayo Clinic College of Medicine, Rochester, MN, USA.
Department of Internal Medicine, Mayo Clinic School of Graduate Medical Education, Rochester, MN, USA.
Nat Med. 2022 Dec;28(12):2497-2503. doi: 10.1038/s41591-022-02053-1. Epub 2022 Nov 14.
Although artificial intelligence (AI) algorithms have been shown to be capable of identifying cardiac dysfunction, defined as ejection fraction (EF) ≤ 40%, from 12-lead electrocardiograms (ECGs), identification of cardiac dysfunction using the single-lead ECG of a smartwatch has yet to be tested. In the present study, a prospective study in which patients of Mayo Clinic were invited by email to download a Mayo Clinic iPhone application that sends watch ECGs to a secure data platform, we examined patient engagement with the study app and the diagnostic utility of the ECGs. We digitally enrolled 2,454 unique patients (mean age 53 ± 15 years, 56% female) from 46 US states and 11 countries, who sent 125,610 ECGs to the data platform between August 2021 and February 2022; 421 participants had at least one watch-classified sinus rhythm ECG within 30 d of an echocardiogram, of whom 16 (3.8%) had an EF ≤ 40%. The AI algorithm detected patients with low EF with an area under the curve of 0.885 (95% confidence interval 0.823-0.946) and 0.881 (0.815-0.947), using the mean prediction within a 30-d window or the closest ECG relative to the echocardiogram that determined the EF, respectively. These findings indicate that consumer watch ECGs, acquired in nonclinical environments, can be used to identify patients with cardiac dysfunction, a potentially life-threatening and often asymptomatic condition.
尽管人工智能 (AI) 算法已被证明能够从 12 导联心电图 (ECG) 中识别射血分数 (EF)≤40%的心脏功能障碍,但尚未对智能手表的单导联 ECG 进行心脏功能障碍识别的测试。在本研究中,我们进行了一项前瞻性研究,通过电子邮件邀请梅奥诊所的患者下载梅奥诊所 iPhone 应用程序,该应用程序将手表 ECG 发送到安全数据平台,我们研究了患者对研究应用程序的参与情况以及 ECG 的诊断效用。我们从 2021 年 8 月至 2022 年 2 月期间,通过数字方式招募了来自美国 46 个州和 11 个国家的 2454 名独特患者(平均年龄 53±15 岁,56%为女性),他们向数据平台发送了 125610 份 ECG;421 名参与者在超声心动图后 30 天内至少有一份经手表分类的窦性节律 ECG,其中 16 名(3.8%)的 EF≤40%。AI 算法使用 30 天窗口内的平均预测值或与确定 EF 的超声心动图最接近的 ECG,分别以 0.885(95%置信区间 0.823-0.946)和 0.881(0.815-0.947)的曲线下面积检测到 EF 较低的患者。这些发现表明,在非临床环境中采集的消费者手表 ECG 可用于识别患有心脏功能障碍的患者,心脏功能障碍是一种潜在的危及生命且常常无症状的疾病。