Suppr超能文献

跨器官、跨模态迁移学习:分割与分类的可行性研究

Cross-organ, cross-modality transfer learning: feasibility study for segmentation and classification.

作者信息

Lee Juhun, Nishikawa Robert M

机构信息

Department of Radiology, University of Pittsburgh, Pittsburgh, PA 15213 USA.

出版信息

IEEE Access. 2020;8:210194-210205. doi: 10.1109/access.2020.3038909. Epub 2020 Nov 18.

Abstract

We conducted two analyses by comparing the transferability of a traditionally transfer-learned CNN (TL) to that of a CNN fine-tuned with an unrelated set of medical images (mammograms in this study) first and then fine-tuned a second time using TL, which we call the cross-organ, cross-modality transfer learned (XTL) network, on 1) multiple sclerosis (MS) segmentation of brain magnetic resonance (MR) images and 2) tumor malignancy classification of multi-parametric prostate MR images. We used 2133 screening mammograms and two public challenge datasets (longitudinal MS lesion segmentation and ProstateX) as intermediate and target datasets for XTL, respectively. We used two CNN architectures as basis networks for each analysis and fine-tuned it to match the target image types (volumetric) and tasks (segmentation and classification). We evaluated the XTL networks against the traditional TL networks using Dice coefficient and AUC as figure of merits for each analysis, respectively. For the segmentation test, XTL networks outperformed TL networks in terms of Dice coefficient (Dice coefficients of 0.72 vs [0.70 - 0.71] with p-value < 0.0001 in differences). For the classification test, XTL networks (AUCs = 0.77 - 0.80) outperformed TL networks (AUC = 0.73 - 0.75). The difference in the AUCs (AUC = 0.045 - 0.047) was statistically significant (p-value < 0.03). We showed XTL using mammograms improves the network performance compared to traditional TL, despite the difference in image characteristics (x-ray vs. MRI and 2D vs. 3D) and imaging tasks (classification vs. segmentation for one of the tasks).

摘要

我们进行了两项分析,首先比较传统迁移学习卷积神经网络(TL)与用一组不相关医学图像(本研究中的乳腺X光片)进行微调然后再使用TL进行二次微调的卷积神经网络的可迁移性,我们将其称为跨器官、跨模态迁移学习(XTL)网络,用于:1)脑磁共振(MR)图像的多发性硬化(MS)分割;2)多参数前列腺MR图像的肿瘤恶性分类。我们分别使用2133张筛查乳腺X光片和两个公共挑战数据集(纵向MS病变分割和ProstateX)作为XTL的中间和目标数据集。我们使用两种卷积神经网络架构作为每次分析的基础网络,并对其进行微调以匹配目标图像类型(体积图像)和任务(分割和分类)。我们分别使用Dice系数和AUC作为每次分析的评估指标,将XTL网络与传统TL网络进行比较。对于分割测试,XTL网络在Dice系数方面优于TL网络(Dice系数分别为0.72和[0.70 - 0.71],差异的p值<0.0001)。对于分类测试,XTL网络(AUC = 0.77 - 0.80)优于TL网络(AUC = 0.73 - 0.75)。AUC的差异(AUC = 0.045 - 0.047)具有统计学意义(p值<0.03)。我们表明,尽管图像特征(X光与MRI以及2D与3D)和成像任务(其中一项任务的分类与分割)存在差异,但使用乳腺X光片的XTL与传统TL相比提高了网络性能。

相似文献

2
Domain- and task-specific transfer learning for medical segmentation tasks.面向医学分割任务的域和任务特定迁移学习。
Comput Methods Programs Biomed. 2022 Feb;214:106539. doi: 10.1016/j.cmpb.2021.106539. Epub 2021 Nov 23.

本文引用的文献

5
D-UNet: A Dimension-Fusion U Shape Network for Chronic Stroke Lesion Segmentation.D-UNet:一种用于慢性中风病灶分割的维度融合U型网络。
IEEE/ACM Trans Comput Biol Bioinform. 2021 May-Jun;18(3):940-950. doi: 10.1109/TCBB.2019.2939522. Epub 2021 Jun 3.
9
An overview of deep learning in medical imaging focusing on MRI.深度学习在医学影像中的概述,重点是 MRI。
Z Med Phys. 2019 May;29(2):102-127. doi: 10.1016/j.zemedi.2018.11.002. Epub 2018 Dec 13.
10
Predicting Nodule Malignancy using a CNN Ensemble Approach.使用卷积神经网络集成方法预测结节的恶性程度。
Proc Int Jt Conf Neural Netw. 2018 Jul;2018. doi: 10.1109/IJCNN.2018.8489345. Epub 2018 Oct 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验