Suppr超能文献

果蝇胚胎发生的三维活体显微镜中的细胞周期相分类。

Cell cycle phase classification in 3D in vivo microscopy of Drosophila embryogenesis.

机构信息

Imaging Informatics Division, Live-Cell Imaging and Automation of Image Analysis Group Bioinformatics Institute, Agency for Science, Technology and Research, Singapore.

出版信息

BMC Bioinformatics. 2011;12 Suppl 13(Suppl 13):S18. doi: 10.1186/1471-2105-12-S13-S18. Epub 2011 Nov 30.

Abstract

BACKGROUND

Cell divisions play critical roles in disease and development. The analysis of cell division phenotypes in high content image-based screening and time-lapse microscopy relies on automated nuclear segmentation and classification of cell cycle phases. Automated identification of the cell cycle phase helps biologists quantify the effect of genetic perturbations and drug treatments. Most existing studies have dealt with 2D images of cultured cells. Few, if any, studies have addressed the problem of cell cycle classification in 3D image stacks of intact tissues.

RESULTS

We developed a workflow for the automated cell cycle phase classification in 3D time-series image datasets of live Drosophila embryos expressing the chromatin marker histone-GFP. Upon image acquisition by laser scanning confocal microscopy and 3D nuclear segmentation, we extracted 3D intensity, shape and texture features from interphase nuclei and mitotic chromosomes. We trained different classifiers, including support vector machines (SVM) and neural networks, to distinguish between 5 cell cycles phases (Interphase and 4 mitotic phases) and achieved over 90% accuracy. As the different phases occur at different frequencies (58% of samples correspond to interphase), we devised a strategy to improve the identification of classes with low representation. To investigate which features are required for accurate classification, we performed feature reduction and selection. We were able to reduce the feature set from 42 to 9 without affecting classifier performance. We observed a dramatic decrease of classification performance when the training and testing samples were derived from two different developmental stages, the nuclear divisions of the syncytial blastoderm and the cell divisions during gastrulation. Combining samples from both developmental stages produced a more robust and accurate classifier.

CONCLUSIONS

Our study demonstrates that automated cell cycle phase classification, besides 2D images of cultured cells, can also be applied to 3D images of live tissues. We could reduce the initial 3D feature set from 42 to 9 without compromising performance. Robust classifiers of intact animals need to be trained with samples from different developmental stages and cell types. Cell cycle classification in live animals can be used for automated phenotyping and to improve the performance of automated cell tracking.

摘要

背景

细胞分裂在疾病和发育中起着关键作用。基于高内涵成像筛选和延时显微镜的细胞分裂表型分析依赖于核自动分割和细胞周期阶段的分类。细胞周期阶段的自动识别有助于生物学家量化遗传扰动和药物处理的影响。大多数现有研究都涉及培养细胞的 2D 图像。如果有的话,很少有研究解决完整组织的 3D 图像堆栈中的细胞周期分类问题。

结果

我们开发了一种用于在表达染色质标记蛋白 histone-GFP 的活体果蝇胚胎的 3D 时间序列图像数据集的自动细胞周期相位分类的工作流程。在激光扫描共聚焦显微镜采集图像并进行 3D 核分割后,我们从间期核和有丝分裂染色体中提取了 3D 强度、形状和纹理特征。我们训练了不同的分类器,包括支持向量机(SVM)和神经网络,以区分 5 个细胞周期阶段(间期和 4 个有丝分裂阶段),准确率超过 90%。由于不同的阶段发生的频率不同(58%的样本对应于间期),我们设计了一种策略来提高低代表性类别的识别能力。为了研究哪些特征对于准确分类是必需的,我们进行了特征降维和选择。我们能够将特征集从 42 个减少到 9 个,而不会影响分类器的性能。当训练和测试样本来自两个不同的发育阶段,即合胞胚层的核分裂和原肠胚形成期间的细胞分裂时,我们观察到分类性能急剧下降。将来自两个发育阶段的样本结合起来产生了更稳健和准确的分类器。

结论

我们的研究表明,除了培养细胞的 2D 图像外,自动细胞周期相位分类还可以应用于活体组织的 3D 图像。我们可以在不影响性能的情况下,将初始的 3D 特征集从 42 个减少到 9 个。需要使用来自不同发育阶段和细胞类型的样本来训练稳健的完整动物分类器。活体动物中的细胞周期分类可用于自动表型分析,并提高自动细胞跟踪的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e214/3278834/25541b58c7b4/1471-2105-12-S13-S18-1.jpg

相似文献

1
Cell cycle phase classification in 3D in vivo microscopy of Drosophila embryogenesis.
BMC Bioinformatics. 2011;12 Suppl 13(Suppl 13):S18. doi: 10.1186/1471-2105-12-S13-S18. Epub 2011 Nov 30.
4
Context based mixture model for cell phase identification in automated fluorescence microscopy.
BMC Bioinformatics. 2007 Jan 30;8:32. doi: 10.1186/1471-2105-8-32.
5
A generic classification-based method for segmentation of nuclei in 3D images of early embryos.
BMC Bioinformatics. 2014 Jan 14;15:9. doi: 10.1186/1471-2105-15-9.
6
Discrimination of cell cycle phases in PCNA-immunolabeled cells.
BMC Bioinformatics. 2015 May 29;16:180. doi: 10.1186/s12859-015-0618-9.
8
Computer-assisted lip diagnosis on Traditional Chinese Medicine using multi-class support vector machines.
BMC Complement Altern Med. 2012 Aug 16;12:127. doi: 10.1186/1472-6882-12-127.
9
The study of muscle remodeling in Drosophila metamorphosis using in vivo microscopy and bioimage informatics.
BMC Bioinformatics. 2012;13 Suppl 17(Suppl 17):S14. doi: 10.1186/1471-2105-13-S17-S14. Epub 2012 Dec 13.

引用本文的文献

2
Cell Cycle Stage Classification Using Phase Imaging with Computational Specificity.
ACS Photonics. 2022 Apr 20;9(4):1264-1273. doi: 10.1021/acsphotonics.1c01779. Epub 2022 Mar 8.
5
An automatic segmentation and classification framework for anti-nuclear antibody images.
Biomed Eng Online. 2013;12 Suppl 1(Suppl 1):S5. doi: 10.1186/1475-925X-12-S1-S5. Epub 2013 Dec 9.
6
A generic classification-based method for segmentation of nuclei in 3D images of early embryos.
BMC Bioinformatics. 2014 Jan 14;15:9. doi: 10.1186/1471-2105-15-9.
7
Towards big data science in the decade ahead from ten years of InCoB and the 1st ISCB-Asia Joint Conference.
BMC Bioinformatics. 2011;12 Suppl 13(Suppl 13):S1. doi: 10.1186/1471-2105-12-S13-S1. Epub 2011 Nov 30.

本文引用的文献

2
A novel cell segmentation method and cell phase identification using Markov model.
IEEE Trans Inf Technol Biomed. 2009 Mar;13(2):152-7. doi: 10.1109/TITB.2008.2007098.
3
An overview of statistical learning theory.
IEEE Trans Neural Netw. 1999;10(5):988-99. doi: 10.1109/72.788640.
4
Novel cell segmentation and online SVM for cell cycle phase identification in automated microscopy.
Bioinformatics. 2008 Jan 1;24(1):94-101. doi: 10.1093/bioinformatics/btm530. Epub 2007 Nov 7.
5
Automated analysis of the mitotic phases of human cells in 3D fluorescence microscopy image sequences.
Med Image Comput Comput Assist Interv. 2006;9(Pt 1):840-8. doi: 10.1007/11866565_103.
6
Context based mixture model for cell phase identification in automated fluorescence microscopy.
BMC Bioinformatics. 2007 Jan 30;8:32. doi: 10.1186/1471-2105-8-32.
7
Automated segmentation, classification, and tracking of cancer cell nuclei in time-lapse microscopy.
IEEE Trans Biomed Eng. 2006 Apr;53(4):762-6. doi: 10.1109/TBME.2006.870201.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验