Suppr超能文献

具有调节作用的眼波前统计模型。

Statistical Model of Ocular Wavefronts With Accommodation.

机构信息

Clinical and Experimental Optometry Research Lab, Physics Center of Minho and Porto Universities (CF-UM-UP), School of Sciences, University of Minho, Braga, Portugal.

Departamento de Física Aplicada, Universidad de Zaragoza, Zaragoza, España.

出版信息

Invest Ophthalmol Vis Sci. 2024 Oct 1;65(12):12. doi: 10.1167/iovs.65.12.12.

Abstract

PURPOSE

The purpose of this study was to determine the minimum number of orthonormal basis functions, applying Principal Component Analysis (PCA), to represent the most wavefront aberrations at different accommodation stages. The study also aims to generate synthetic wavefront data using these functions.

METHODS

Monocular wavefront data from 191 subjects (26.15 ± 5.56 years old) were measured with a Hartmann-Shack aberrometer, simulating accommodation from 0 diopters (D) to 5 D in 1 D steps. The wavefronts for each accommodative demand were rescaled for different pupil sizes: 4.66, 4.76, 4.40, 4.09, 4.07, and 3.68 mm. PCA was applied to 150 wavefront parameters (25 Zernike coefficients × 6 accommodation levels) to obtain eigenvectors for dimensional reduction. A total of 49 eigenvectors were modeled as a sum of 2 multivariate Gaussians, from which 1000 synthetic data sets were generated.

RESULTS

The first 49 eigenvectors preserved 99.97% of the original data variability. No significant differences were observed between the mean values and standard deviation of the generated and original 49 eigenvectors (two one-sided test [TOST], P > 0.05/49) and (F-test, P > 0.05/49), both with Bonferroni correction. The mean values of the generated parameters (1000) were statistically equal to those of the original data (TOST, P > 0.05/150). The variability of the generated data was similar to the original data for the most important Zernike coefficients (F-test, P > 0.05/150).

CONCLUSIONS

PCA significantly reduces the dimensionality of wavefront aberration data across 6 accommodative demands, reducing the variable space by over 66%. The synthetic data generated by the proposed wavefront model for accommodation closely resemble the original clinical data.

摘要

目的

本研究旨在确定应用主成分分析(PCA)的最小数量的正交基函数,以表示不同调节阶段的大多数波前像差。本研究还旨在使用这些函数生成合成波前数据。

方法

使用哈特曼-夏克(Hartmann-Shack)像差仪测量 191 名受试者(26.15±5.56 岁)的单眼波前数据,模拟从 0 屈光度(D)到 5 D 的调节,步长为 1 D。对于不同的瞳孔大小,对每个调节需求的波前进行了重新缩放:4.66、4.76、4.40、4.09、4.07 和 3.68 mm。将 150 个波前参数(25 个泽尼克系数×6 个调节水平)应用于 PCA 以获得降维的特征向量。将总共 49 个特征向量建模为 2 个多元高斯的和,从中生成了 1000 个合成数据集。

结果

前 49 个特征向量保留了原始数据变异性的 99.97%。生成的和原始的 49 个特征向量的平均值和标准差之间没有观察到显著差异(两个单边检验[TOST],P>0.05/49)和(F 检验,P>0.05/49),两者均经 Bonferroni 校正。生成参数(1000)的平均值在统计学上与原始数据相等(TOST,P>0.05/150)。生成数据的变异性与原始数据的最重要泽尼克系数相似(F 检验,P>0.05/150)。

结论

PCA 显著降低了跨 6 个调节需求的波前像差数据的维数,将变量空间减少了 66%以上。所提出的用于调节的波前模型生成的合成数据与原始临床数据非常相似。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/042c/11463707/4fbda92919ca/iovs-65-12-12-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验