Dept of Physics, Chemistry and Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Linköping University, 581 83, Linköping, Sweden.
Dept of Physics, Chemistry and Biology, Linköping University, 581 83, Linköping, Sweden.
Nat Commun. 2024 Oct 9;15(1):8724. doi: 10.1038/s41467-024-52951-w.
Since the release of AlphaFold, researchers have actively refined its predictions and attempted to integrate it into existing pipelines for determining protein structures. These efforts have introduced a number of functionalities and optimisations at the latest Critical Assessment of protein Structure Prediction edition (CASP15), resulting in a marked improvement in the prediction of multimeric protein structures. However, AlphaFold's capability of predicting large protein complexes is still limited and integrating experimental data in the prediction pipeline is not straightforward. In this study, we introduce AF_unmasked to overcome these limitations. Our results demonstrate that AF_unmasked can integrate experimental information to build larger or hard to predict protein assemblies with high confidence. The resulting predictions can help interpret and augment experimental data. This approach generates high quality (DockQ score > 0.8) structures even when little to no evolutionary information is available and imperfect experimental structures are used as a starting point. AF_unmasked is developed and optimised to fill incomplete experimental structures (structural inpainting), which may provide insights into protein dynamics. In summary, AF_unmasked provides an easy-to-use method that efficiently integrates experiments to predict large protein complexes more confidently.
自从 AlphaFold 发布以来,研究人员一直在积极改进其预测结果,并尝试将其集成到现有的蛋白质结构预测管道中。这些努力在最新的蛋白质结构预测评估(Critical Assessment of protein Structure Prediction,CASP15)中引入了许多功能和优化,使得多聚体蛋白质结构的预测得到了显著改善。然而,AlphaFold 预测大型蛋白质复合物的能力仍然有限,并且在预测管道中集成实验数据并不简单。在本研究中,我们引入了 AF_unmasked 来克服这些限制。我们的结果表明,AF_unmasked 可以整合实验信息,以高置信度构建更大或难以预测的蛋白质组装体。预测结果可以帮助解释和补充实验数据。即使几乎没有或没有进化信息可用,并且使用不完美的实验结构作为起点,这种方法也可以生成高质量的(DockQ 分数>0.8)结构。AF_unmasked 是为填补不完整的实验结构(结构补全)而开发和优化的,这可能为蛋白质动力学提供见解。总之,AF_unmasked 提供了一种易于使用的方法,可有效地整合实验数据,更自信地预测大型蛋白质复合物。