Division of Nephrology and Hypertension, Department of Internal Medicine, St. Marianna University School of Medicine, Miyamae-ku, Kawasaki, Kanagawa, 216-8511, Japan.
Sci Rep. 2024 Oct 8;14(1):23460. doi: 10.1038/s41598-024-73898-4.
Minimal change disease (MCD) is a common cause of nephrotic syndrome. Due to its rapid progression, early detection is essential; however, definitive diagnosis requires invasive kidney biopsy. This study aims to develop non-invasive predictive models for diagnosing MCD by machine learning. We retrospectively collected data on demographic characteristics, blood tests, and urine tests from patients with nephrotic syndrome who underwent kidney biopsy. We applied four machine learning algorithms-TabPFN, LightGBM, Random Forest, and Artificial Neural Network-and logistic regression. We compared their performance using stratified 5-repeated 5-fold cross-validation for the area under the receiver operating characteristic curve (AUROC) and the area under the precision-recall curve (AUPRC). Variable importance was evaluated using the SHapley Additive exPlanations (SHAP) method. A total of 248 patients were included, with 82 cases (33%) were diagnosed with MCD. TabPFN demonstrated the best performance with an AUROC of 0.915 (95% CI 0.896-0.932) and an AUPRC of 0.840 (95% CI 0.807-0.872). The SHAP methods identified C3, total cholesterol, and urine red blood cells as key predictors for TabPFN, consistent with previous reports. Machine learning models could be valuable non-invasive diagnostic tools for MCD.
微小病变性肾病(MCD)是肾病综合征的常见病因。由于其进展迅速,早期检测至关重要;然而,明确的诊断需要有创的肾脏活检。本研究旨在通过机器学习开发用于诊断 MCD 的非侵入性预测模型。我们回顾性地收集了接受肾脏活检的肾病综合征患者的人口统计学特征、血液检查和尿液检查数据。我们应用了四种机器学习算法 - TabPFN、LightGBM、随机森林和人工神经网络以及逻辑回归。我们使用分层 5 倍重复 5 折交叉验证比较了它们在接收者操作特征曲线下的面积(AUROC)和精度-召回曲线下的面积(AUPRC)的性能。使用 SHapley Additive exPlanations (SHAP) 方法评估了变量的重要性。共纳入 248 例患者,其中 82 例(33%)被诊断为 MCD。TabPFN 表现最佳,AUROC 为 0.915(95%CI 0.896-0.932),AUPRC 为 0.840(95%CI 0.807-0.872)。SHAP 方法确定 C3、总胆固醇和尿液红细胞为 TabPFN 的关键预测因子,与之前的报告一致。机器学习模型可能是 MCD 有价值的非侵入性诊断工具。