Suppr超能文献

套索回归在胃肠病学中的应用及影响:一项系统综述

Application and impact of Lasso regression in gastroenterology: A systematic review.

作者信息

Ali Hassam, Shahzad Maria, Sarfraz Shiza, Sewell Kerry B, Alqalyoobi Shehabaldin, Mohan Babu P

机构信息

Department of Gastroenterology and Hepatology, East Carolina University, Greenville, NC, USA.

Department of Internal Medicine, University of Health Sciences, Lahore, Punjab, Pakistan.

出版信息

Indian J Gastroenterol. 2023 Dec;42(6):780-790. doi: 10.1007/s12664-023-01426-9. Epub 2023 Aug 18.

Abstract

Least absolute shrinkage and selection operator (Lasso) regression is a statistical technique that can be used to study the effects of clinical variables in outcome prediction. In this study, we aimed at systematically reviewing the application of Lasso regression in gastroenterology for developing predictive models and providing a method of performing Lasso regression. A comprehensive search strategy was conducted in PubMed, Embase and Cochrane CENTRAL databases (Keywords: lasso regression; gastrointestinal tract/diseases) following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Studies were screened for eligibility based on pre-defined selection criteria and the data was extracted using a standardized form. Total 16 studies were included, comprising a diverse range of gastroenterological disease-related outcomes. Sample sizes ranged from 134 to 8861 subjects. Eleven studies reported liver disease-related prediction models, while five focused on non-hepatic etiology models. Lasso regression was applied for variable selection, risk prediction and model development, with various validation methods and performance metrics used. Model performance metrics included Area Under the Receiver Operating Characteristics (AUROC), C-index and calibration plots. In gastroenterology, Lasso regression has been used in various diseases such as inflammatory bowel disease, liver disease and esophageal cancer. It is valuable for complex scenarios with many predictors. However, its effectiveness depends on high-quality and complete data. While it identifies important variables, it doesn't provide causal interpretations. Therefore, cautious interpretation is necessary considering the study design and data quality.

摘要

最小绝对收缩与选择算子(Lasso)回归是一种统计技术,可用于研究临床变量在结局预测中的作用。在本研究中,我们旨在系统回顾Lasso回归在胃肠病学中用于建立预测模型的应用情况,并提供一种执行Lasso回归的方法。按照系统评价和Meta分析的首选报告项目(PRISMA)指南,在PubMed、Embase和Cochrane CENTRAL数据库中进行了全面的检索策略(关键词:Lasso回归;胃肠道/疾病)。根据预先定义的选择标准对研究进行资格筛选,并使用标准化表格提取数据。共纳入16项研究,涵盖了各种与胃肠病相关的结局。样本量从134至8861名受试者不等。11项研究报告了与肝病相关的预测模型,而5项研究聚焦于非肝脏病因模型。Lasso回归用于变量选择、风险预测和模型开发,并使用了各种验证方法和性能指标。模型性能指标包括受试者操作特征曲线下面积(AUROC)、C指数和校准图。在胃肠病学中,Lasso回归已应用于多种疾病,如炎症性肠病、肝病和食管癌。它对于具有许多预测变量的复杂情况很有价值。然而,其有效性取决于高质量和完整的数据。虽然它能识别重要变量,但并不提供因果解释。因此,考虑到研究设计和数据质量,需要谨慎解释。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验