Langenbucher Achim, Szentmáry Nóra, Cayless Alan, Cooke David, Hoffmann Peter, Wendelstein Jascha
Department of Experimental Ophthalmology, Saarland University, Saarbrücken, Germany.
Dr. Rolf M. Schwiete Center for Limbal Stem Cell and Aniridia Research, Saarland University, Saarbrücken, Germany.
Clin Exp Ophthalmol. 2025 Jan-Feb;53(1):26-38. doi: 10.1111/ceo.14449. Epub 2024 Oct 9.
The purpose of this study was to simulate the impact of biometric measure uncertainties, lens equivalent and toric power labelling tolerances and axis alignment errors on the refractive outcome after cataract surgery with toric lens implantation.
In this retrospective non-randomised cross sectional Monte-Carlo simulation study we evaluated a dataset containing 7458 LenStar 900 preoperative biometric measurements. The biometric uncertainties from literature, lens power labelling according to ISO 11979, and axis alignment tolerances of a modern toric lens (Hoya Vivinex) were taken to be normally distributed and used in a Monte-Carlo simulation with 100 000 samples per eye. The target variable was the defocus equivalent (DEQ) derived using the Castrop (DEQ) and the Haigis (DEQ) formulae.
Mean/median / 90% quantile DEQ was 0.22/0.21/0.36 D and DEQ was 0.20/0.19/0.32 D. Ignoring the variation in lens power labelling and toric axis alignment the respective DEQ was 0.20/0.19/0.32 D and DEQ was 0.18/0.17/0.29 D. DEQ and DEQ increased with shorter eyes, steeper corneas, equivalent lens power and highly with toric lens power.
According to our simulation results, uncertainties in biometric measures, lens power labelling tolerances, and axis alignment errors are responsible for a significant part of the refraction prediction error after cataract surgery with toric lens implantation. Additional labelling of the exact equivalent and toric power on the lens package could be a step to improve postoperative results.
本研究的目的是模拟生物测量不确定性、晶状体等效度数和散光度数标注公差以及轴位对准误差对白内障手术植入散光晶状体后屈光结果的影响。
在这项回顾性非随机横断面蒙特卡洛模拟研究中,我们评估了一个包含7458例LenStar 900术前生物测量数据的数据集。采用文献中的生物测量不确定性、根据ISO 11979标准的晶状体度数标注以及现代散光晶状体(豪雅Vivinex)的轴位对准公差,这些数据呈正态分布,并用于每只眼睛100000个样本的蒙特卡洛模拟。目标变量是使用Castrop(DEQ)和Haigis(DEQ)公式得出的等效散光度(DEQ)。
平均/中位数/90%分位数的DEQ分别为0.22/0.21/0.36 D,而使用Haigis公式得出的DEQ为0.20/0.19/0.32 D。忽略晶状体度数标注和散光轴位对准的变化,相应的DEQ分别为0.20/0.19/0.32 D和使用Haigis公式得出的DEQ为0.18/0.17/0.29 D。DEQ和使用Haigis公式得出的DEQ随着眼轴缩短、角膜更陡峭、等效晶状体度数增加而增加,并且随着散光晶状体度数增加而显著增加。
根据我们的模拟结果,生物测量不确定性、晶状体度数标注公差和轴位对准误差是白内障手术植入散光晶状体后屈光预测误差的重要组成部分。在晶状体包装上额外标注确切的等效度数和散光度数可能是改善术后结果的一个措施。