Suppr超能文献

视觉转换器为肾病理学分类带来了新的活力。

Vision transformer introduces a new vitality to the classification of renal pathology.

机构信息

Department of Nephrology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, PR China.

Department of Nephrology, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, 109 Xueyuan Road, Wenzhou, Zhejiang, PR China.

出版信息

BMC Nephrol. 2024 Oct 9;25(1):337. doi: 10.1186/s12882-024-03800-x.

Abstract

Recent advancements in computer vision within the field of artificial intelligence (AI) have made significant inroads into the medical domain. However, the application of AI for classifying renal pathology remains challenging due to the subtle variations in multiple renal pathological classifications. Vision Transformers (ViT), an adaptation of the Transformer model for image recognition, have demonstrated superior capabilities in capturing global features and providing greater explainability. In our study, we developed a ViT model using a diverse set of stained renal histopathology images to evaluate its effectiveness in classifying renal pathology. A total of 1861 whole slide images (WSI) stained with HE, MASSON, PAS, and PASM were collected from 635 patients. Renal tissue images were then extracted, tiled, and categorized into 14 classes on the basis of renal pathology. We employed the classic ViT model from the Timm library, utilizing images sized 384 × 384 pixels with 16 × 16 pixel patches, to train the classification model. A comparative analysis was conducted to evaluate the performance of the ViT model against traditional convolutional neural network (CNN) models. The results indicated that the ViT model demonstrated superior recognition ability (accuracy: 0.96-0.99). Furthermore, we visualized the identification process of the ViT models to investigate potentially significant pathological ultrastructures. Our study demonstrated that ViT models outperformed CNN models in accurately classifying renal pathology. Additionally, ViT models are able to focus on specific, significant structures within renal histopathology, which could be crucial for identifying novel and meaningful pathological features in the diagnosis and treatment of renal disease.

摘要

近年来,人工智能领域的计算机视觉技术取得了重大进展,已经深入到医学领域。然而,由于多种肾脏病理分类存在细微差异,因此将人工智能应用于肾脏病理分类仍然具有挑战性。视觉转换器(Vision Transformers,ViT)是一种用于图像识别的 Transformer 模型的改编,它在捕捉全局特征和提供更好的可解释性方面表现出了卓越的能力。在我们的研究中,我们使用了一组多样化的染色肾脏组织病理学图像来开发 ViT 模型,以评估其在肾脏病理分类中的有效性。共收集了来自 635 名患者的 1861 张 HE、MASSON、PAS 和 PASM 染色的全切片图像(WSI)。然后,从肾脏组织图像中提取、平铺并根据肾脏病理分为 14 类。我们使用了 Timm 库中的经典 ViT 模型,该模型使用大小为 384 × 384 像素、16 × 16 像素块的图像来训练分类模型。我们进行了对比分析,以评估 ViT 模型与传统卷积神经网络(CNN)模型的性能。结果表明,ViT 模型具有卓越的识别能力(准确率:0.96-0.99)。此外,我们还可视化了 ViT 模型的识别过程,以研究潜在的重要病理超微结构。我们的研究表明,ViT 模型在准确分类肾脏病理方面优于 CNN 模型。此外,ViT 模型能够关注肾脏组织病理学中的特定、显著结构,这对于识别肾脏疾病诊断和治疗中的新的有意义的病理特征可能至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd2b/11465538/33f561fb7e9f/12882_2024_3800_Fig4_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验