Suppr超能文献

使用改进的UNet模型自动识别全切片图像中的肾小球

Automatic Identification of Glomerular in Whole-Slide Images Using a Modified UNet Model.

作者信息

Kaur Gurjinder, Garg Meenu, Gupta Sheifali, Juneja Sapna, Rashid Junaid, Gupta Deepali, Shah Asadullah, Shaikh Asadullah

机构信息

Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, Punjab, India.

Kulliyyah of Information and Communication Technology, International Islamic University Malaysia, Kuala Lumpur 53100, Malaysia.

出版信息

Diagnostics (Basel). 2023 Oct 9;13(19):3152. doi: 10.3390/diagnostics13193152.

Abstract

Glomeruli are interconnected capillaries in the renal cortex that are responsible for blood filtration. Damage to these glomeruli often signifies the presence of kidney disorders like glomerulonephritis and glomerulosclerosis, which can ultimately lead to chronic kidney disease and kidney failure. The timely detection of such conditions is essential for effective treatment. This paper proposes a modified UNet model to accurately detect glomeruli in whole-slide images of kidney tissue. The UNet model was modified by changing the number of filters and feature map dimensions from the first to the last layer to enhance the model's capacity for feature extraction. Moreover, the depth of the UNet model was also improved by adding one more convolution block to both the encoder and decoder sections. The dataset used in the study comprised 20 large whole-side images. Due to their large size, the images were cropped into 512 × 512-pixel patches, resulting in a dataset comprising 50,486 images. The proposed model performed well, with 95.7% accuracy, 97.2% precision, 96.4% recall, and 96.7% F1-score. These results demonstrate the proposed model's superior performance compared to the original UNet model, the UNet model with EfficientNetb3, and the current state-of-the-art. Based on these experimental findings, it has been determined that the proposed model accurately identifies glomeruli in extracted kidney patches.

摘要

肾小球是肾皮质中相互连接的毛细血管,负责血液过滤。这些肾小球受损通常表明存在肾小球肾炎和肾小球硬化等肾脏疾病,最终可能导致慢性肾病和肾衰竭。及时检测这些病症对于有效治疗至关重要。本文提出了一种改进的UNet模型,用于在肾脏组织的全切片图像中准确检测肾小球。通过改变从第一层到最后一层的滤波器数量和特征图维度对UNet模型进行了改进,以增强模型的特征提取能力。此外,还通过在编码器和解码器部分都添加一个卷积块来提高UNet模型的深度。该研究中使用的数据集包括20张大的全切片图像。由于图像尺寸较大,将其裁剪成512×512像素的图像块,从而得到一个包含50486张图像的数据集。所提出的模型表现良好,准确率为95.7%,精确率为97.2%,召回率为96.4%,F1分数为96.7%。这些结果表明,与原始UNet模型、带有EfficientNetb3的UNet模型以及当前的最先进模型相比,所提出的模型具有卓越的性能。基于这些实验结果,已确定所提出的模型能够准确识别提取的肾脏图像块中的肾小球。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6d7b/10572820/512d7ea55823/diagnostics-13-03152-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验