Suppr超能文献

使用高斯混合模型和深度神经网络从异质冷冻电镜结构构建分子模型系列。

Building molecular model series from heterogeneous CryoEM structures using Gaussian mixture models and deep neural networks.

作者信息

Chen Muyuan

机构信息

Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA 94025, USA.

出版信息

bioRxiv. 2024 Sep 27:2024.09.27.615511. doi: 10.1101/2024.09.27.615511.

Abstract

Cryogenic electron microscopy (CryoEM) produces structures of macromolecules at near-atomic resolution. However, building molecular models with good stereochemical geometry from those structures can be challenging and time-consuming, especially when many structures are obtained from datasets with conformational heterogeneity. Here we present a model refinement protocol that automatically generates series of molecular models from CryoEM datasets, which describe the dynamics of the macromolecular system and have near-perfect geometry scores.

摘要

低温电子显微镜(CryoEM)能以接近原子分辨率生成大分子结构。然而,从这些结构构建具有良好立体化学几何结构的分子模型可能具有挑战性且耗时,尤其是当许多结构是从具有构象异质性的数据集中获得时。在此,我们提出一种模型优化方案,该方案可从CryoEM数据集中自动生成一系列分子模型,这些模型描述了大分子系统的动力学,并且具有近乎完美的几何分数。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/54b6/11463374/fb57d349aba6/nihpp-2024.09.27.615511v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验