Suppr超能文献

使用高斯混合模型和深度神经网络从异质冷冻电镜结构构建分子模型系列。

Building molecular model series from heterogeneous CryoEM structures using Gaussian mixture models and deep neural networks.

作者信息

Chen Muyuan

机构信息

Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, CA, USA.

出版信息

Commun Biol. 2025 May 25;8(1):798. doi: 10.1038/s42003-025-08202-9.

Abstract

Cryogenic electron microscopy (CryoEM) produces structures of macromolecules at near-atomic resolution. However, building molecular models with good stereochemical geometry from those structures can be challenging and time-consuming, especially when many structures are obtained from datasets with conformational heterogeneity. Here we present a model refinement protocol that automatically generates series of molecular models from CryoEM datasets, which describe the dynamics of the macromolecular system and have near-perfect geometry scores. This method makes it easier to interpret the movement of the protein complex from heterogeneity analysis and to compare the structural dynamics observed from CryoEM data with results from other experimental and simulation techniques.

摘要

低温电子显微镜(CryoEM)能够以近原子分辨率解析大分子结构。然而,从这些结构构建具有良好立体化学几何形状的分子模型可能具有挑战性且耗时,特别是当从具有构象异质性的数据集中获得许多结构时。在此,我们提出了一种模型优化方案,该方案可从CryoEM数据集中自动生成一系列分子模型,这些模型描述了大分子系统的动力学并且具有近乎完美的几何得分。这种方法使得从异质性分析中更容易解读蛋白质复合物的运动,并将CryoEM数据中观察到的结构动力学与其他实验和模拟技术的结果进行比较。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3ff5/12104439/afde9cbfa3f9/42003_2025_8202_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验