Suppr超能文献

CAE-ResVGG融合网络:一种集成卷积自动编码器和迁移学习的急性髓系白血病未成熟白细胞特征提取框架。

CAE-ResVGG FusionNet: A Feature Extraction Framework Integrating Convolutional Autoencoders and Transfer Learning for Immature White Blood Cells in Acute Myeloid Leukemia.

作者信息

Elhassan Tusneem, Osman Ahmed Hamza, Mohd Rahim Mohd Shafry, Mohd Hashim Siti Zaiton, Ali Abdulalem, Elhassan Esmaeil, Elkamali Yusra, Aljurf Mahmoud

机构信息

Cancer Center of Excellence, King Faisal Specialist Hospital and Research Center, Riyadh 11564, Saudi Arabia.

Department of Information Systems, Faculty of Computing and Information Technology, King Abdulaziz University Rabigh, Saudi Arabia.

出版信息

Heliyon. 2024 Sep 12;10(19):e37745. doi: 10.1016/j.heliyon.2024.e37745. eCollection 2024 Oct 15.

Abstract

Acute myeloid leukemia (AML) is a highly aggressive cancer form that affects myeloid cells, leading to the excessive growth of immature white blood cells (WBCs) in both bone marrow and peripheral blood. Timely AML detection is crucial for effective treatment and patient well-being. Currently, AML diagnosis relies on the manual recognition of immature WBCs through peripheral blood smear analysis, which is time-consuming, prone to errors, and subject to inter-observers' variation. This study aimed to develop a computer-aided diagnostic framework for AML, called "CAE-ResVGG FusionNet", that precisely identifies and classifies immature WBCs into their respective subtypes. The proposed framework leverages an integrated approach, by combining a convolutional autoencoder (CAE) with finely tuned adaptations of the VGG19 and ResNet50 architectures to extract features from CAE-derived embeddings. The process begins with a binary classification model distinguishing between mature and immature WBCs followed by a multiclassifier further classifying immature cells into four subtypes: myeloblasts, monoblasts, erythroblasts, and promyelocytes. The CAE-ResVGG FusionNet workflow comprises four primary stages, including data preprocessing, feature extraction, classification, and validation. The preprocessing phase involves applying data augmentation methods using geometric transformations and synthetic image generation using the CAE to address imbalance in the WBC distribution. Feature extraction involves image embedding and transfer learning, where CAE-derived image representations are used by a custom integrated model of VGG19 and ResNet50 pretrained models. The classification phase employs a weighted ensemble approach that leverages VGG19 and ResNet50, where the optimal weighting parameters are selected using a grid search. The model performance was assessed during the validation phase using the overall accuracy, precision, and sensitivity, while the area under the receiver characteristic curve (AUC) was used to evaluate the model's discriminatory capability. The proposed framework exhibited notable results, achieving an average accuracy of 99.9%, sensitivity of 91.7%, and precision of 98.8%. The model demonstrated exceptional discriminatory ability, as evidenced by an AUC of 99.6%. Significantly, the proposed system outperformed previous methods, indicating its superior diagnostic ability.

摘要

急性髓系白血病(AML)是一种侵袭性很强的癌症,会影响髓系细胞,导致骨髓和外周血中未成熟白细胞(WBC)过度生长。及时检测AML对于有效治疗和患者健康至关重要。目前,AML诊断依赖于通过外周血涂片分析手动识别未成熟白细胞,这既耗时,又容易出错,还会受到观察者间差异的影响。本研究旨在开发一种用于AML的计算机辅助诊断框架,称为“CAE-ResVGG融合网络”,该框架能精确识别未成熟白细胞并将其分类为各自的亚型。所提出的框架采用了一种集成方法,将卷积自动编码器(CAE)与VGG19和ResNet50架构的精细调整相结合,以从CAE衍生的嵌入中提取特征。该过程首先是一个二分类模型,区分成熟和未成熟白细胞,然后是一个多分类器,将未成熟细胞进一步分为四个亚型:原始粒细胞、原始单核细胞、幼红细胞和早幼粒细胞。CAE-ResVGG融合网络工作流程包括四个主要阶段,即数据预处理、特征提取、分类和验证。预处理阶段涉及使用几何变换应用数据增强方法,并使用CAE生成合成图像,以解决白细胞分布不平衡问题。特征提取涉及图像嵌入和迁移学习,其中CAE衍生的图像表示由VGG19和ResNet50预训练模型的自定义集成模型使用。分类阶段采用加权集成方法,利用VGG19和ResNet50,其中使用网格搜索选择最佳加权参数。在验证阶段,使用总体准确率、精确率和灵敏度评估模型性能,同时使用接收器特征曲线下面积(AUC)评估模型的辨别能力。所提出的框架取得了显著成果,平均准确率达到99.9%,灵敏度为91.7%,精确率为98.8%。该模型表现出卓越的辨别能力,AUC为99.6%证明了这一点。值得注意的是,所提出的系统优于先前方法,表示其具有卓越的诊断能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e3a2/11462284/cb430f6df25e/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验