Suppr超能文献

3D细胞模型中的生物支架:推动药物发现的创新

Biological Scaffolds in 3D Cell Models: Driving Innovation in Drug Discovery.

作者信息

Dave Raj, Pandey Kshipra, Patel Ritu, Gour Nidhi, Bhatia Dhiraj

机构信息

Department of Chemistry, Indrashil University, Kadi, Mehsana, Gujarat, India.

Department of Biosciences, Indrashil University, Kadi, Mehsana, Gujarat, India.

出版信息

Stem Cell Rev Rep. 2025 Jan;21(1):147-166. doi: 10.1007/s12015-024-10800-9. Epub 2024 Oct 10.

Abstract

The discipline of 3D cell modeling is currently undergoing a surge of captivating developments that are enhancing the realism and utility of tissue simulations. Using bioinks which represent cells, scaffolds, and growth factors scientists can construct intricate tissue architectures layer by layer using innovations like 3D bioprinting. Drug testing can be accelerated and organ functions more precisely replicated owing to the precise control that microfluidic technologies and organ-on-chip devices offer over the cellular environment. Tissue engineering is becoming more dynamic with materials that can modify their surroundings with the advent of hydrogels and smart biomaterials. Advances in spheroids and organoids are not only bringing us towards more effective and customized therapies, but they are also improving their ability to resemble actual human tissues. Confocal and two-photon microscopy are examples of advanced imaging methods that provide precise images of the functioning and interaction of cells. Artificial Intelligence models have applications for enhanced scaffold designs and for predicting the response of tissues to medications. Furthermore, via strengthening predictive models, optimizing data analysis, and simplifying 3D cell culture design, artificial intelligence is revolutionizing this field. When combined, these technologies are improving our ability to conduct research and moving us toward more individualized and effective medical interventions.

摘要

3D细胞建模学科目前正经历着一系列引人入胜的发展,这些发展正在提高组织模拟的真实性和实用性。科学家们使用代表细胞、支架和生长因子的生物墨水,借助3D生物打印等创新技术,能够逐层构建复杂的组织结构。由于微流控技术和芯片器官装置能够对细胞环境进行精确控制,药物测试得以加速,器官功能也能得到更精确的复制。随着水凝胶和智能生物材料的出现,能够改变周围环境的材料使组织工程变得更加动态化。球体和类器官的进展不仅使我们朝着更有效、更个性化的治疗方向发展,还提高了它们模拟实际人体组织的能力。共聚焦显微镜和双光子显微镜是先进成像方法的例子,它们能够提供细胞功能和相互作用的精确图像。人工智能模型可用于改进支架设计以及预测组织对药物的反应。此外,通过强化预测模型、优化数据分析和简化3D细胞培养设计,人工智能正在彻底改变这一领域。这些技术结合起来,正在提高我们进行研究的能力,并推动我们朝着更个性化、更有效的医疗干预方向发展。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验