Suppr超能文献

DynProfiler:一个利用深度学习技术对信号动力学进行全面分析和解释的Python软件包。

DynProfiler: a Python package for comprehensive analysis and interpretation of signaling dynamics leveraged by deep learning techniques.

作者信息

Tsutsui Masato, Okada Mariko

机构信息

Institute for Protein Research, Osaka University, Suita 565-0871, Japan.

Biological/Pharmacological Research Laboratories, JT Central Pharmaceutical Research Institute, Takatsuki 569-1125, Japan.

出版信息

Bioinform Adv. 2024 Oct 7;4(1):vbae145. doi: 10.1093/bioadv/vbae145. eCollection 2024.

Abstract

SUMMARY

Signaling dynamics encode important features and regulatory mechanisms of biological systems, and recent studies have reported the use of simulated signaling dynamics with mechanistic modeling as biomarkers for human diseases. Given the success of deep learning techniques, it is expected that they can extract informative patterns from simulation results more effectively than traditional approaches involving manual feature selection, which can be used for subsequent analyses, such as patient stratification and survival prediction. Here, we propose DynProfiler, which utilizes the entire signaling dynamics, including intermediate variables, as input and leverages deep learning techniques to extract informative features without requiring any labels. Furthermore, DynProfiler incorporates a modern explainable AI solution to provide quantitative time-dependent importance scores for each dynamics. Using simulated dynamics of patients with breast cancer as an example, we demonstrate DynProfiler's ability to extract high-quality features that can predict mortality risk and identify important dynamics, highlighting upregulated phosphorylated GSK3β as a biomarker for poor prognosis. Overall, this tool can be useful for clinical application, as well as for elucidating biological system dynamics.

AVAILABILITY AND IMPLEMENTATION

The DynProfiler Python library is available in GitHub at https://github.com/okadalabipr/DynProfiler.

摘要

摘要

信号动力学编码了生物系统的重要特征和调节机制,最近的研究报道了使用具有机制模型的模拟信号动力学作为人类疾病的生物标志物。鉴于深度学习技术的成功,预计它们能够比涉及手动特征选择的传统方法更有效地从模拟结果中提取信息模式,这些信息模式可用于后续分析,如患者分层和生存预测。在这里,我们提出了DynProfiler,它将包括中间变量在内的整个信号动力学作为输入,并利用深度学习技术在无需任何标签的情况下提取信息特征。此外,DynProfiler集成了一种现代的可解释人工智能解决方案,为每个动力学提供定量的时间依赖性重要性得分。以乳腺癌患者的模拟动力学为例,我们展示了DynProfiler提取能够预测死亡风险的高质量特征并识别重要动力学的能力,突出了上调的磷酸化GSK3β作为预后不良的生物标志物。总体而言,该工具可用于临床应用以及阐明生物系统动力学。

可用性和实现方式

DynProfiler Python库可在GitHub上获取,网址为https://github.com/okadalabipr/DynProfiler。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9687/11464416/2f7b956c11ba/vbae145f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验