Suppr超能文献

一种用于高灵敏度神经记录的基于纳米阱的钼酸锶神经电极。

A nanowell-based MoS neuroelectrode for high-sensitivity neural recording.

作者信息

Liu Shuangjie, Sun Xinyu, Wang Yang, Liu Kaijin, Liu Renpeng, Zhang Yuqin, Ni Zhaoliang, Tang Wanyu, Zhang Shaofang, Mu Xiaoyu, Wang Hao, Zhang Xiao-Dong, Ming Dong

机构信息

Tianjin Key Laboratory of Brain Science and Neural Engineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300072, China.

Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, Institute of Advanced Materials Physics, School of Sciences, Tianjin University, Tianjin 300350, China.

出版信息

iScience. 2024 Sep 13;27(10):110949. doi: 10.1016/j.isci.2024.110949. eCollection 2024 Oct 18.

Abstract

Implantable neural electrodes are crucial in neurological diagnosis and therapy because of their ultra-high spatial resolution, but they are constrained by high impedance and insufficient charge injection capacity, resulting in noise that often obscures valuable signals. Emerging nanotechnologies are powerful tools to improve sensitivity and biocompatibility. Herein, we developed quantized 2D MoS electrodes by incorporating bioactive MoS nanosheets onto bare electrodes, achieving sensitive, compatible recording. The 2D materials can create tiny nanowells, which behaved as quantized charge storage units and thus improved sensitivity. The key sensitivity indicators, impedance and cathode charge storage capacity, showed a multifold increase. The 17.7-fold improvement in catalytic activity of MoS electrodes facilitated effective current transmission and reduced inflammatory response. recording showed that the sensitivity of local field potentials increased throughout frequency range and peaked at a 4.7-fold in β rhythm. This work provides a general strategy for achieving effective diagnoses of neurological disorders.

摘要

可植入神经电极因其超高的空间分辨率在神经诊断和治疗中至关重要,但它们受到高阻抗和电荷注入能力不足的限制,导致噪声常常掩盖有价值的信号。新兴的纳米技术是提高灵敏度和生物相容性的有力工具。在此,我们通过将生物活性二硫化钼纳米片整合到裸电极上开发了量子化二维二硫化钼电极,实现了灵敏、兼容的记录。二维材料可以形成微小的纳米阱,其作为量子化电荷存储单元,从而提高了灵敏度。关键的灵敏度指标,即阻抗和阴极电荷存储容量,呈现出数倍的增加。二硫化钼电极催化活性提高了17.7倍,促进了有效电流传输并减少了炎症反应。记录表明,局部场电位的灵敏度在整个频率范围内都有所提高,在β节律中达到峰值,提高了4.7倍。这项工作为实现神经系统疾病的有效诊断提供了一个通用策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ff9d/11465046/cd5f573b8780/fx1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验