Suppr超能文献

在 ADNI4 中实现和验证人脸去识别(去面)。

Implementation and validation of face de-identification (de-facing) in ADNI4.

机构信息

Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA.

Northern California Institute for Research and Education, San Francisco Veterans Affairs Medical Center, San Francisco, California, USA.

出版信息

Alzheimers Dement. 2024 Nov;20(11):8048-8061. doi: 10.1002/alz.14303. Epub 2024 Oct 11.

Abstract

INTRODUCTION

Recent technological advances have increased the risk that de-identified brain images could be re-identified from face imagery. The Alzheimer's Disease Neuroimaging Initiative (ADNI) is a leading source of publicly available de-identified brain imaging, who quickly acted to protect participants' privacy.

METHODS

An independent expert committee evaluated 11 face-deidentification ("de-facing") methods and selected four for formal testing.

RESULTS

Effects of de-facing on brain measurements were comparable across methods and sufficiently small to recommend de-facing in ADNI. The committee ultimately recommended mri_reface for advantages in reliability, and for some practical considerations. ADNI leadership approved the committee's recommendation, beginning in ADNI4.

DISCUSSION

ADNI4 de-faces all applicable brain images before subsequent pre-processing, analyses, and public release. Trained analysts inspect de-faced images to confirm complete face removal and complete non-modification of brain. This paper details the history of the algorithm selection process and extensive validation, then describes the production workflows for de-facing in ADNI.

HIGHLIGHTS

ADNI is implementing "de-facing" of MRI and PET beginning in ADNI4. "De-facing" alters face imagery in brain images to help protect privacy. Four algorithms were extensively compared for ADNI and mri_reface was chosen. Validation confirms mri_reface is robust and effective for ADNI sequences. Validation confirms mri_reface negligibly affects ADNI brain measurements.

摘要

简介

最近的技术进步增加了从面部图像重新识别去识别化脑图像的风险。阿尔茨海默病神经影像学倡议(ADNI)是公开提供去识别化脑成像的主要来源,他们迅速采取行动保护参与者的隐私。

方法

一个独立的专家委员会评估了 11 种面部去识别(“去面”)方法,并选择了四种进行正式测试。

结果

去面方法对大脑测量的影响在方法之间具有可比性,并且足够小,因此建议在 ADNI 中进行去面。委员会最终推荐了 mri_reface,因为它在可靠性方面具有优势,并且在一些实际考虑方面具有优势。ADNI 领导层批准了委员会的建议,从 ADNI4 开始。

讨论

ADNI4 在随后的预处理、分析和公开发布之前,对所有适用的脑图像进行去面。经过培训的分析人员检查去面图像,以确认完全去除面部和完全不修改大脑。本文详细介绍了算法选择过程和广泛验证的历史,然后描述了 ADNI 中去面的制作工作流程。

重点

ADNI 从 ADNI4 开始实施 MRI 和 PET 的“去面”。“去面”改变了脑图像中的面部图像,以帮助保护隐私。为 ADNI 对四种算法进行了广泛比较,选择了 mri_reface。验证确认 mri_reface 对 ADNI 序列具有强大而有效的作用。验证确认 mri_reface 对 ADNI 大脑测量的影响可以忽略不计。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/cc46/11567833/5300ac0327a6/ALZ-20-8048-g007.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验