Jiang Shuaiwei, Xue Jiawei, Liu Tong, Huang Hui, Xu Airong, Liu Dong, Luo Qiquan, Bao Jun, Liu Xiaokang, Ding Tao, Jiang Zheng, Yao Tao
School of Nuclear Science and Technology, Key Laboratory of Precision and Intelligent Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, P.R. China.
College of Science, National University of Defense Technology, Changsha 410073, China.
J Am Chem Soc. 2024 Oct 23;146(42):29084-29093. doi: 10.1021/jacs.4c10613. Epub 2024 Oct 11.
Understanding the characteristics of interfacial hydroxyl (OH) at the solid/liquid electrochemical interface is crucial for deciphering synergistic catalysis. However, it remains challenging to elucidate the influences of spatial distance between interfacial OH and neighboring reactants on reaction kinetics at the atomic level. Herein, we visualize the distance-dependent synergistic interaction in heterogeneous dual-site catalysis by using ex-situ infrared nanospectroscopy and in situ infrared spectroscopy techniques. These spectroscopic techniques achieve direct identification of the spatial distribution of synergistic species and reveal that OH facilitates the reactant deprotonation process depending on site distances in dual-site catalysts. Via modulating Ir-Co pair distances, we find that the dynamic equilibrium between generation and consumption of OH accounts for high-efficiency synergism at the optimized distance of 7.9 Å. At farther or shorter distances, spatial inaccessibility and resistance of OH with intermediates lead to OH accumulation, thereby diminishing the synergistic effect. Hence, a volcano-shaped curve has been established between the spatial distance and mass activity using formic acid oxidation as the probe reaction. This notion could also be extended to oxophilic metals, like Ir-Ru pairs, where volcano curves and dynamic equilibrium further evidence the universal significance of spatial distances.
了解固/液电化学界面处界面羟基(OH)的特性对于解读协同催化作用至关重要。然而,在原子水平上阐明界面OH与相邻反应物之间的空间距离对反应动力学的影响仍然具有挑战性。在此,我们通过使用非原位红外纳米光谱和原位红外光谱技术,可视化了多相双位点催化中距离依赖性的协同相互作用。这些光谱技术实现了对协同物种空间分布的直接识别,并揭示了OH根据双位点催化剂中的位点距离促进反应物去质子化过程。通过调节Ir-Co对的距离,我们发现OH生成与消耗之间的动态平衡是在7.9 Å的优化距离处实现高效协同作用的原因。在更远或更短的距离处,OH与中间体的空间不可及性和阻力导致OH积累,从而降低协同效应。因此,以甲酸氧化为探针反应,在空间距离和质量活性之间建立了一条火山形曲线。这一概念也可以扩展到亲氧金属,如Ir-Ru对,其中火山曲线和动态平衡进一步证明了空间距离的普遍意义。