Suppr超能文献

多模态表观扩散 MRI 模型在无创评估乳腺癌及 Ki-67 表达中的应用。

Multimodal apparent diffusion MRI model in noninvasive evaluation of breast cancer and Ki-67 expression.

机构信息

Department of Radiology, Shandong Provincial Qianfoshan Hospital, Shandong University, No.16766 Jingshi Road, Jinan, Shandong, China.

Department of Radiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, China.

出版信息

Cancer Imaging. 2024 Oct 11;24(1):137. doi: 10.1186/s40644-024-00780-x.

Abstract

BACKGROUND

To assess the capability of multimodal apparent diffusion (MAD) weighted magnetic resonance imaging (MRI) to distinguish between malignant and benign breast lesions, and to predict Ki-67 expression level in breast cancer.

METHODS

This retrospective study was conducted with 93 patients who had postoperative pathology-confirmed breast cancer or benign breast lesions. MAD images were acquired using a 3.0 T MRI scanner with 16 b values. The MAD parameters, as flow (f, D), unimpeded (fluid) (f), hindered (f, D, and α), and restricted (f, D), were calculated. The differences of the parameters were compared by Mann-Whitney U test between the benign/malignant lesions and high/low Ki-67 expression level. The diagnostic performance was assessed by the area under the receiver operating characteristic curve (AUC).

RESULTS

The f in the malignant lesions was significantly higher than in the benign lesions (P = 0.001), whereas the f and D were found to be significantly lower (P = 0.007 and P < 0.001, respectively). Compared with individual parameter in differentiating malignant from benign breast lesions, the combination parameters of MAD (f, D, and f) provided the highest AUC (0.851). Of the 73 malignant lesions, 42 (57.5%) were assessed as Ki-67 low expression and 31 (42.5%) were Ki-67 high expression. The Ki-67 high status showed lower D, higher D and higher α (P < 0.05). The combination parameters of D, D, and α provided the highest AUC (0.691) for evaluating Ki-67 expression level.

CONCLUSIONS

MAD weighted MRI is a useful method for the breast lesions diagnostics and the preoperative prediction of Ki-67 expression level.

摘要

背景

评估多模态表观扩散(MAD)加权磁共振成像(MRI)区分良恶性乳腺病变的能力,并预测乳腺癌中 Ki-67 的表达水平。

方法

本回顾性研究纳入了 93 例经术后病理证实为乳腺癌或良性乳腺病变的患者。使用 3.0T MRI 扫描仪采集 MAD 图像,采集 16 个 b 值。计算 MAD 参数,包括流动(f,D)、无阻碍(流体)(f)、受阻(f,D 和 α)和受限(f,D)。通过 Mann-Whitney U 检验比较良性/恶性病变和高/低 Ki-67 表达水平之间参数的差异。通过接受者操作特征曲线(AUC)下面积评估诊断性能。

结果

恶性病变的 f 值明显高于良性病变(P=0.001),而 f 和 D 值明显较低(P=0.007 和 P<0.001)。与单独参数区分良恶性乳腺病变相比,MAD 组合参数(f、D 和 f)提供了最高的 AUC(0.851)。在 73 例恶性病变中,42 例(57.5%)被评估为 Ki-67 低表达,31 例(42.5%)为 Ki-67 高表达。Ki-67 高状态表现为 D 值较低、D 值较高和α值较高(P<0.05)。D、D 和 α 的组合参数提供了评估 Ki-67 表达水平的最高 AUC(0.691)。

结论

MAD 加权 MRI 是一种用于乳腺病变诊断和术前预测 Ki-67 表达水平的有用方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f5d/11470582/f4c6f0806d92/40644_2024_780_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验