Suppr超能文献

基于机器学习的幼年和成年 C57BL/6 小鼠血液生物标志物面板的辐射生物剂量测定验证。

Validation of a blood biomarker panel for machine learning-based radiation biodosimetry in juvenile and adult C57BL/6 mice.

机构信息

Center for Radiological Research, Columbia University Irving Medical Center, New York, NY, USA.

出版信息

Sci Rep. 2024 Oct 12;14(1):23872. doi: 10.1038/s41598-024-74953-w.

Abstract

Following a large-scale radiological event, timely collection of samples from all potentially exposed individuals may be precluded, and high-throughput bioassays capable of rapid and individualized dose assessment several days post-exposure will be essential for population triage and efficient implementation of medical treatment. The objective of this work was to validate the performance of a biomarker panel of radiosensitive intracellular leukocyte proteins (ACTN1, DDB2, and FDXR) and blood cell counts (CD19+ B-cells and CD3+ T-cells) for retrospective classification of exposure and dose estimation up to 7 days post-exposure in an in-vivo C57BL/6 mouse model. Juvenile and adult C57BL/6 mice of both sexes were total body irradiated with 0, 1, 2, 3, or 4 Gy, peripheral blood was collected 1, 4, and 7-days post-exposure, and individual blood biomarkers were quantified by imaging flow cytometry. An ensemble machine learning platform was used to identify the strongest predictor variables and combine them for biodosimetry outputs. This approach generated successful exposure classification (ROC AUC = 0.94, 95% CI: 0.90-0.97) and quantitative dose reconstruction (R = 0.79, RMSE = 0.68 Gy, MAE = 0.53 Gy), supporting the potential utility of the proposed biomarker assay for determining exposure and received dose in an individual.

摘要

在大规模放射性事件发生后,可能无法及时采集所有潜在暴露个体的样本,而能够在暴露后几天内快速、个体化地评估剂量的高通量生物测定法对于人群分类和有效实施医疗治疗将至关重要。本工作的目的是验证一组易受辐射影响的细胞内白细胞蛋白(ACTN1、DDB2 和 FDXR)和血细胞计数(CD19+B 细胞和 CD3+T 细胞)生物标志物的性能,该标志物可用于活体 C57BL/6 小鼠模型中在暴露后 7 天内进行回溯性分类和剂量估计。雄性和雌性的幼年和成年 C57BL/6 小鼠均进行全身照射 0、1、2、3 或 4Gy,在暴露后 1、4 和 7 天采集外周血,并通过成像流式细胞术定量个体血液生物标志物。使用集成机器学习平台来识别最强的预测变量,并将它们组合用于生物剂量测定输出。该方法成功地进行了暴露分类(ROC AUC=0.94,95%CI:0.90-0.97)和定量剂量重建(R=0.79,RMSE=0.68Gy,MAE=0.53Gy),支持了拟议的生物标志物检测在确定个体暴露和接受剂量方面的潜在效用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/614c/11470949/c440930f6409/41598_2024_74953_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验