Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168th street, VC-11-234/5, New York, NY, 10032, USA.
Radiological Research Accelerator Facility, Columbia University Irving Medical Center, Irvington, NY, USA.
Sci Rep. 2023 Jan 18;13(1):949. doi: 10.1038/s41598-023-28130-0.
During a large-scale radiological event such as an improvised nuclear device detonation, many survivors will be shielded from radiation by environmental objects, and experience only partial-body irradiation (PBI), which has different consequences, compared with total-body irradiation (TBI). In this study, we tested the hypothesis that applying machine learning to a combination of radiation-responsive biomarkers (ACTN1, DDB2, FDXR) and B and T cell counts will quantify and distinguish between PBI and TBI exposures. Adult C57BL/6 mice of both sexes were exposed to 0, 2.0-2.5 or 5.0 Gy of half-body PBI or TBI. The random forest (RF) algorithm trained on ½ of the data reconstructed the radiation dose on the remaining testing portion of the data with mean absolute error of 0.749 Gy and reconstructed the product of dose and exposure status (defined as 1.0 × Dose for TBI and 0.5 × Dose for PBI) with MAE of 0.472 Gy. Among irradiated samples, PBI could be distinguished from TBI: ROC curve AUC = 0.944 (95% CI: 0.844-1.0). Mouse sex did not significantly affect dose reconstruction. These results support the hypothesis that combinations of protein biomarkers and blood cell counts can complement existing methods for biodosimetry of PBI and TBI exposures.
在大规模放射性事件(如简易核装置爆炸)中,许多幸存者会被环境物体屏蔽辐射,仅经历部分身体照射(PBI),与全身照射(TBI)相比,其后果不同。在这项研究中,我们检验了一个假设,即应用机器学习对辐射反应生物标志物(ACTN1、DDB2、FDXR)和 B 和 T 细胞计数的组合进行分析,将定量区分 PBI 和 TBI 暴露。我们用 0、2.0-2.5 或 5.0Gy 的半身 PBI 或 TBI 照射成年 C57BL/6 雌雄小鼠。在数据的一半上训练的随机森林(RF)算法用 0.749Gy 的平均绝对误差重建了剩余测试数据部分的辐射剂量,并重建了剂量和暴露状态的乘积(定义为 TBI 的 1.0×剂量和 PBI 的 0.5×剂量),MAE 为 0.472Gy。在照射样本中,PBI 可以与 TBI 区分开来:ROC 曲线 AUC=0.944(95%CI:0.844-1.0)。小鼠性别对剂量重建没有显著影响。这些结果支持这样的假设,即蛋白质生物标志物和血细胞计数的组合可以补充 PBI 和 TBI 暴露的生物剂量测定的现有方法。