ASELL, LLC, Owings Mills, Maryland.
Columbia University, Center for Radiological Research, New York, New York.
Radiat Res. 2021 Nov 1;196(5):523-534. doi: 10.1667/RADE-20-00030.1.
In a large-scale catastrophe, such as a nuclear detonation in a major city, it will be crucial to accurately diagnose large numbers of people to direct scarce medical resources to those in greatest need. Currently no FDA-cleared tests are available to diagnose radiation exposures, which can lead to complex, life-threatening injuries. To address this gap, we have achieved substantial advancements in radiation biodosimetry through refinement and adaptation of the cytokinesis-block micronucleus (CBMN) assay as a high throughput, quantitative diagnostic test. The classical CBMN approach, which quantifies micronuclei (MN) resulting from DNA damage, suffers from considerable time and expert labor requirements, in addition to a lack of universal methodology across laboratories. We have developed the CytoRADx™ System to address these drawbacks by implementing a standardized reagent kit, optimized assay protocol, fully automated microscopy and image analysis, and integrated dose prediction. These enhancements allow the CytoRADx System to obtain high-throughput, standardized results without specialized labor or laboratory-specific calibration curves. The CytoRADx System has been optimized for use with both humans and non-human primates (NHP) to quantify radiation dose-dependent formation of micronuclei in lymphocytes, observed using whole blood samples. Cell nuclei and resulting MN are fluorescently stained and preserved on durable microscope slides using materials provided in the kit. Up to 1,000 slides per day are subsequently scanned using the commercially based RADxScan™ Imager with customized software, which automatically quantifies the cellular features and calculates the radiation dose. Using less than 1 mL of blood, irradiated ex vivo, our system has demonstrated accurate and precise measurement of exposures from 0 to 8 Gy (90% of results within 1 Gy of delivered dose). These results were obtained from 636 human samples (24 distinct donors) and 445 NHP samples (30 distinct subjects). The system demonstrated comparable results during in vivo studies, including an investigation of 43 NHPs receiving single-dose total-body irradiation. System performance is repeatable across laboratories, operators, and instruments. Results are also statistically similar across diverse populations, considering various demographics, common medications, medical conditions, and acute injuries associated with radiological disasters. Dose calculations are stable over time as well, providing reproducible results for at least 28 days postirradiation, and for blood specimens collected and stored at room temperature for at least 72 h. The CytoRADx System provides significant advancements in the field of biodosimetry that will enable accurate diagnoses across diverse populations in large-scale emergency scenarios. In addition, our technological enhancements to the well-established CBMN assay provide a pathway for future diagnostic applications, such as toxicology and oncology.
在大规模灾难中,如大城市的核爆炸,准确诊断大量人员并将稀缺的医疗资源分配给最需要的人至关重要。目前,尚无经过美国食品和药物管理局 (FDA) 批准的测试可用于诊断辐射暴露,这可能导致复杂的、危及生命的伤害。为了解决这一差距,我们通过改进和适应细胞有丝分裂阻断微核 (CBMN) 检测作为高通量、定量诊断检测,在辐射生物剂量学方面取得了重大进展。经典的 CBMN 方法通过量化 DNA 损伤引起的微核 (MN) 来进行诊断,但需要大量的时间和专家劳动力,并且实验室之间缺乏通用方法。我们开发了 CytoRADx™ 系统,通过实施标准化试剂试剂盒、优化的检测方案、全自动显微镜和图像分析以及整合剂量预测来解决这些缺点。这些增强功能使 CytoRADx 系统能够在不使用专门劳动力或实验室特定校准曲线的情况下,获得高通量、标准化的结果。CytoRADx 系统已针对人类和非人类灵长类动物 (NHP) 进行了优化,可使用全血样本定量测量淋巴细胞中辐射剂量依赖性微核的形成。细胞核和由此产生的 MN 使用试剂盒中提供的材料在耐用的显微镜载玻片上进行荧光染色和保存。每天最多可扫描 1,000 个载玻片,使用基于商业的 RADxScan™ 成像仪和定制软件进行扫描,该软件可自动量化细胞特征并计算辐射剂量。我们的系统使用小于 1 毫升的血液,离体照射,已证明能够准确和精确地测量 0 至 8 Gy 的暴露量(90%的结果与所提供剂量的 1 Gy 内)。这些结果来自 636 个人类样本(24 个不同的供体)和 445 个 NHP 样本(30 个不同的研究对象)。该系统在体内研究中也表现出了可比的结果,包括对 43 只接受全身单次剂量照射的 NHP 的研究。系统性能在实验室、操作人员和仪器之间具有可重复性。考虑到与放射性灾害相关的各种人口统计学、常见药物、医疗状况和急性损伤,结果在不同人群中也具有统计学相似性。剂量计算也随着时间的推移保持稳定,至少在照射后 28 天内提供可重复的结果,并且在室温下采集和储存的血液样本至少可保存 72 小时。CytoRADx 系统在生物剂量学领域取得了重大进展,将能够在大规模紧急情况下为不同人群提供准确诊断。此外,我们对成熟的 CBMN 检测的技术增强为未来的诊断应用提供了途径,例如毒理学和肿瘤学。