Suppr超能文献

用于改善混合中子+光子照射生物剂量学的生物标志物整合。

Biomarker integration for improved biodosimetry of mixed neutron + photon exposures.

机构信息

Center for Radiological Research, Columbia University Irving Medical Center, 630 West 168Th Street, VC-11-234/5, New York, NY, 10032, USA.

Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University, Washington, DC, USA.

出版信息

Sci Rep. 2023 Jul 6;13(1):10936. doi: 10.1038/s41598-023-37906-3.

Abstract

There is a persistent risk of a large-scale malicious or accidental exposure to ionizing radiation that may affect a large number of people. Exposure will consist of both a photon and neutron component, which will vary in magnitude between individuals and is likely to have profound impacts on radiation-induced diseases. To mitigate these potential disasters, there exists a need for novel biodosimetry approaches that can estimate the radiation dose absorbed by each person based on biofluid samples, and predict delayed effects. Integration of several radiation-responsive biomarker types (transcripts, metabolites, blood cell counts) by machine learning (ML) can improve biodosimetry. Here we integrated data from mice exposed to various neutron + photon mixtures, total 3 Gy dose, using multiple ML algorithms to select the strongest biomarker combinations and reconstruct radiation exposure magnitude and composition. We obtained promising results, such as receiver operating characteristic curve area of 0.904 (95% CI: 0.821, 0.969) for classifying samples exposed to ≥ 10% neutrons vs. < 10% neutrons, and R of 0.964 for reconstructing photon-equivalent dose (weighted by neutron relative biological effectiveness) for neutron + photon mixtures. These findings demonstrate the potential of combining various -omic biomarkers for novel biodosimetry.

摘要

存在大规模恶意或意外暴露于电离辐射的持续风险,这可能会影响大量人群。暴露将包括光子和中子成分,其在个体之间的大小会有所不同,并且很可能对辐射诱导的疾病产生深远影响。为了减轻这些潜在的灾难,需要新型的生物剂量测定方法,该方法可以根据生物流体样本估算每个人吸收的辐射剂量,并预测延迟效应。通过机器学习 (ML) 整合几种辐射反应生物标志物类型(转录本、代谢物、血细胞计数)可以改善生物剂量测定。在这里,我们整合了暴露于各种中子+光子混合物(总剂量 3 Gy)的小鼠的数据,使用多种 ML 算法选择最强的生物标志物组合,并重建辐射暴露的幅度和组成。我们获得了有希望的结果,例如,对于将暴露于≥10%中子的样本与<10%中子的样本进行分类,曲线下面积为 0.904(95%置信区间:0.821,0.969),对于重建光子等效剂量(按中子相对生物学效应加权)的 R 为 0.964,用于中子+光子混合物。这些发现表明了结合各种组学生物标志物进行新型生物剂量测定的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6321/10325958/c599c4834848/41598_2023_37906_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验