文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

通过深度强化学习探索纳米团簇势能面:全局最小值搜索策略

Exploring Nanocluster Potential Energy Surfaces via Deep Reinforcement Learning: Strategies for Global Minimum Search.

作者信息

Raju Rajesh K

机构信息

National Research Council Canada, Clean Energy Innovation (CEI) Research Centre, Mississauga, Ontario L5K 1B4, Canada.

School of Chemistry, University of Birmingham, Birmingham B15 2TT, U.K.

出版信息

J Phys Chem A. 2024 Oct 24;128(42):9122-9134. doi: 10.1021/acs.jpca.4c04416. Epub 2024 Oct 13.


DOI:10.1021/acs.jpca.4c04416
PMID:39397328
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11514025/
Abstract

The search for global minimum (GM) configurations in nanoclusters is complicated by intricate potential energy landscapes replete with numerous local minima. The complexity of these landscapes escalates with increasing cluster size and compositional diversity. Evolutionary algorithms, such as genetic algorithms, are hampered by slow convergence rates and a propensity for prematurely settling on suboptimal solutions. Likewise, the basin hopping technique faces difficulties in navigating these complex landscapes effectively, particularly at larger scales. These challenges highlight the need for more sophisticated methodologies to efficiently scan the potential energy surfaces of nanoclusters. In response, our research has developed a novel deep reinforcement learning (DRL) framework specifically designed to explore the potential energy surfaces (PES) of nanoclusters, aiming to identify the GM configurations along with other low-energy states. This study demonstrates the framework's effectiveness in managing various nanocluster types, including both mono- and multimetallic compositions, and its proficiency in navigating complex energy landscapes. The model is characterized by remarkable adaptability and sustained efficiency, even as cluster sizes and feature vector dimensions increase. The demonstrated adaptability of DRL in this context underscores its considerable potential in materials science, particularly for the efficient discovery and optimization of novel nanomaterials. To the best of our knowledge, this is the first DRL framework designed for the GM search in nanoclusters, representing a significant innovation in the field.

摘要

在纳米团簇中寻找全局最小(GM)构型会因错综复杂的势能景观而变得复杂,这些景观充满了众多局部最小值。随着团簇尺寸的增加和组成多样性的提高,这些景观的复杂性也会升级。进化算法,如遗传算法,受到收敛速度缓慢和倾向于过早陷入次优解的阻碍。同样,盆地跳跃技术在有效导航这些复杂景观方面也面临困难,尤其是在更大尺度上。这些挑战凸显了需要更复杂的方法来有效扫描纳米团簇的势能面。作为回应,我们的研究开发了一种新颖的深度强化学习(DRL)框架,专门设计用于探索纳米团簇的势能面(PES),旨在识别GM构型以及其他低能态。这项研究证明了该框架在处理各种纳米团簇类型(包括单金属和多金属组成)方面的有效性,以及其在复杂能量景观中导航的能力。即使团簇尺寸和特征向量维度增加,该模型仍具有显著的适应性和持续效率。在这种情况下,DRL所展示的适应性凸显了其在材料科学中的巨大潜力,特别是在新型纳米材料的高效发现和优化方面。据我们所知,这是第一个为纳米团簇中的GM搜索设计的DRL框架,代表了该领域的一项重大创新。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e598/11514025/9f07b720cb72/jp4c04416_0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e598/11514025/6ca50d021002/jp4c04416_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e598/11514025/cc23cee9a4ff/jp4c04416_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e598/11514025/c5d1ef67eb91/jp4c04416_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e598/11514025/7fbe34b51204/jp4c04416_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e598/11514025/949275bddf2f/jp4c04416_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e598/11514025/60855538fa85/jp4c04416_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e598/11514025/39c59b326406/jp4c04416_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e598/11514025/44195bad05e4/jp4c04416_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e598/11514025/b12d11479cec/jp4c04416_0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e598/11514025/2863d49c03f1/jp4c04416_0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e598/11514025/c4120e94f436/jp4c04416_0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e598/11514025/9f07b720cb72/jp4c04416_0012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e598/11514025/6ca50d021002/jp4c04416_0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e598/11514025/cc23cee9a4ff/jp4c04416_0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e598/11514025/c5d1ef67eb91/jp4c04416_0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e598/11514025/7fbe34b51204/jp4c04416_0004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e598/11514025/949275bddf2f/jp4c04416_0005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e598/11514025/60855538fa85/jp4c04416_0006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e598/11514025/39c59b326406/jp4c04416_0007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e598/11514025/44195bad05e4/jp4c04416_0008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e598/11514025/b12d11479cec/jp4c04416_0009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e598/11514025/2863d49c03f1/jp4c04416_0010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e598/11514025/c4120e94f436/jp4c04416_0011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e598/11514025/9f07b720cb72/jp4c04416_0012.jpg

相似文献

[1]
Exploring Nanocluster Potential Energy Surfaces via Deep Reinforcement Learning: Strategies for Global Minimum Search.

J Phys Chem A. 2024-10-24

[2]
Cluster-MLP: An Active Learning Genetic Algorithm Framework for Accelerated Discovery of Global Minimum Configurations of Pure and Alloyed Nanoclusters.

J Chem Inf Model. 2023-10-23

[3]
A strategy to find minimal energy nanocluster structures.

J Comput Chem. 2013-8-26

[4]
Approximate Policy-Based Accelerated Deep Reinforcement Learning.

IEEE Trans Neural Netw Learn Syst. 2020-6

[5]
Combining Deep Learning Neural Networks with Genetic Algorithms to Map Nanocluster Configuration Spaces with Quantum Accuracy at Low Computational Cost.

J Chem Inf Model. 2023-8-28

[6]
Exploring Potential Energy Surfaces Using Reinforcement Machine Learning.

J Chem Inf Model. 2022-7-11

[7]
Improving efficiency of training a virtual treatment planner network via knowledge-guided deep reinforcement learning for intelligent automatic treatment planning of radiotherapy.

Med Phys. 2021-4

[8]
Generating candidates in global optimization algorithms using complementary energy landscapes.

J Chem Phys. 2023-7-14

[9]
A hybrid deep learning approach to solve optimal power flow problem in hybrid renewable energy systems.

Sci Rep. 2024-8-21

[10]
Minima hopping guided path search: an efficient method for finding complex chemical reaction pathways.

J Chem Phys. 2014-6-7

本文引用的文献

[1]
Cluster-MLP: An Active Learning Genetic Algorithm Framework for Accelerated Discovery of Global Minimum Configurations of Pure and Alloyed Nanoclusters.

J Chem Inf Model. 2023-10-23

[2]
Introduction: Nanoparticles in Catalysis.

Chem Rev. 2020-1-22

[3]
Machine Learning Interatomic Potentials as Emerging Tools for Materials Science.

Adv Mater. 2019-9-5

[4]
Optimization of Molecules via Deep Reinforcement Learning.

Sci Rep. 2019-7-24

[5]
GIGA: a versatile genetic algorithm for free and supported clusters and nanoparticles in the presence of ligands.

Nanoscale. 2019-5-9

[6]
SchNetPack: A Deep Learning Toolbox For Atomistic Systems.

J Chem Theory Comput. 2019-1-8

[7]
Data-Driven Learning of Total and Local Energies in Elemental Boron.

Phys Rev Lett. 2018-4-13

[8]
Optimizing Chemical Reactions with Deep Reinforcement Learning.

ACS Cent Sci. 2017-12-27

[9]
Ensemble-Average Representation of Pt Clusters in Conditions of Catalysis Accessed through GPU Accelerated Deep Neural Network Fitting Global Optimization.

J Chem Theory Comput. 2016-12-13

[10]
ABCluster: the artificial bee colony algorithm for cluster global optimization.

Phys Chem Chem Phys. 2015-10-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索