Suppr超能文献

基于统计批次感知的空间转录组学嵌入式集成、降维和对齐。

Statistical batch-aware embedded integration, dimension reduction, and alignment for spatial transcriptomics.

机构信息

NCMIS, CEMS, RCSDS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China.

School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.

出版信息

Bioinformatics. 2024 Oct 1;40(10). doi: 10.1093/bioinformatics/btae611.

Abstract

MOTIVATION

Spatial transcriptomics (ST) technologies provide richer insights into the molecular characteristics of cells by simultaneously measuring gene expression profiles and their relative locations. However, each slice can only contain limited biological variation, and since there are almost always non-negligible batch effects across different slices, integrating numerous slices to account for batch effects and locations is not straightforward. Performing multi-slice integration, dimensionality reduction, and other downstream analyses separately often results in suboptimal embeddings for technical artifacts and biological variations. Joint modeling integrating these steps can enhance our understanding of the complex interplay between technical artifacts and biological signals, leading to more accurate and insightful results.

RESULTS

In this context, we propose a hierarchical hidden Markov random field model STADIA to reduce batch effects, extract common biological patterns across multiple ST slices, and simultaneously identify spatial domains. We demonstrate the effectiveness of STADIA using five datasets from different species (human and mouse), various organs (brain, skin, and liver), and diverse platforms (10x Visium, ST, and Slice-seqV2). STADIA can capture common tissue structures across multiple slices and preserve slice-specific biological signals. In addition, STADIA outperforms the other three competing methods (PRECAST, fastMNN, and Harmony) in terms of the balance between batch mixing and spatial domain identification, and it demonstrates the advantage of joint modeling when compared to STAGATE and GraphST.

AVAILABILITY AND IMPLEMENTATION

The source code implemented by R is available at https://github.com/zhanglabtools/STADIA and archived with version 1.01 on Zenodo https://zenodo.org/records/13637744.

摘要

动机

空间转录组学(ST)技术通过同时测量基因表达谱及其相对位置,为细胞的分子特征提供了更丰富的见解。然而,每个切片只能包含有限的生物变异,并且由于不同切片之间几乎总是存在不可忽略的批次效应,因此整合大量切片以解释批次效应和位置并不简单。分别进行多切片集成、降维和其他下游分析通常会导致技术伪影和生物变异的最优嵌入。整合这些步骤的联合建模可以增强我们对技术伪影和生物信号之间复杂相互作用的理解,从而产生更准确和有见地的结果。

结果

在这种情况下,我们提出了一个层次隐马尔可夫随机场模型 STADIA,以减少批次效应,提取多个 ST 切片之间的共同生物学模式,并同时识别空间域。我们使用来自不同物种(人类和小鼠)、不同器官(大脑、皮肤和肝脏)和不同平台(10x Visium、ST 和 Slice-seqV2)的五个数据集来证明 STADIA 的有效性。STADIA 可以捕获多个切片之间的共同组织结构,并保留切片特异性的生物学信号。此外,与其他三种竞争方法(PRECAST、fastMNN 和 Harmony)相比,STADIA 在批次混合和空间域识别之间取得了更好的平衡,并且与 STAGATE 和 GraphST 相比,联合建模具有优势。

可用性和实现

用 R 实现的源代码可在 https://github.com/zhanglabtools/STADIA 上获得,并在 Zenodo https://zenodo.org/records/13637744 上存档,版本为 1.01。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc57/11512591/a82c9f821479/btae611f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验