Suppr超能文献

基于Transformer的生成对抗网络用于肝脏分割

Transformer based Generative Adversarial Network for Liver Segmentation.

作者信息

Demir Ugur, Zhang Zheyuan, Wang Bin, Antalek Matthew, Keles Elif, Jha Debesh, Borhani Amir, Ladner Daniela, Bagci Ulas

机构信息

Northwestern University, IL 60201, USA.

出版信息

Proc Int Conf Image Anal Process. 2022 May;13374:340-347. doi: 10.1007/978-3-031-13324-4_29. Epub 2022 Aug 4.

Abstract

Automated liver segmentation from radiology scans (CT, MRI) can improve surgery and therapy planning and follow-up assessment in addition to conventional use for diagnosis and prognosis. Although convolutional neural networks (CNNs) have became the standard image segmentation tasks, more recently this has started to change towards Transformers based architectures because Transformers are taking advantage of capturing long range dependence modeling capability in signals, so called attention mechanism. In this study, we propose a new segmentation approach using a hybrid approach combining the Transformer(s) with the Generative Adversarial Network (GAN) approach. The premise behind this choice is that the self-attention mechanism of the Transformers allows the network to aggregate the high dimensional feature and provide global information modeling. This mechanism provides better segmentation performance compared with traditional methods. Furthermore, we encode this generator into the GAN based architecture so that the discriminator network in the GAN can classify the credibility of the generated segmentation masks compared with the real masks coming from human (expert) annotations. This allows us to extract the high dimensional topology information in the mask for biomedical image segmentation and provide more reliable segmentation results. Our model achieved a high dice coefficient of 0.9433, recall of 0.9515, and precision of 0.9376 and outperformed other Transformer based approaches. The implementation details of the proposed architecture can be found at https://github.com/UgurDemir/tranformer_liver_segmentation.

摘要

除了用于传统的诊断和预后外,通过放射学扫描(CT、MRI)进行肝脏自动分割可以改善手术和治疗规划以及后续评估。尽管卷积神经网络(CNN)已成为标准的图像分割任务,但最近这种情况开始朝着基于Transformer的架构转变,因为Transformer利用了在信号中捕捉长距离依赖建模的能力,即所谓的注意力机制。在本研究中,我们提出了一种新的分割方法,该方法采用了将Transformer与生成对抗网络(GAN)方法相结合的混合方法。这种选择背后的前提是,Transformer的自注意力机制使网络能够聚合高维特征并提供全局信息建模。与传统方法相比,这种机制提供了更好的分割性能。此外,我们将此生成器编码到基于GAN的架构中,以便GAN中的判别器网络可以将生成的分割掩码的可信度与来自人类(专家)注释的真实掩码进行比较。这使我们能够提取用于生物医学图像分割的掩码中的高维拓扑信息,并提供更可靠的分割结果。我们的模型实现了0.9433的高骰子系数、0.9515的召回率和0.9376的精度,并且优于其他基于Transformer的方法。所提出架构的实现细节可在https://github.com/UgurDemir/tranformer_liver_segmentation上找到。

相似文献

1
Transformer based Generative Adversarial Network for Liver Segmentation.基于Transformer的生成对抗网络用于肝脏分割
Proc Int Conf Image Anal Process. 2022 May;13374:340-347. doi: 10.1007/978-3-031-13324-4_29. Epub 2022 Aug 4.

引用本文的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验