Suppr超能文献

此微管不存在:基于扩散模型的超分辨率显微镜图像生成

This Microtubule Does Not Exist: Super-Resolution Microscopy Image Generation by a Diffusion Model.

作者信息

Saguy Alon, Nahimov Tav, Lehrman Maia, Gómez-de-Mariscal Estibaliz, Hidalgo-Cenalmor Iván, Alalouf Onit, Balakrishnan Ashwin, Heilemann Mike, Henriques Ricardo, Shechtman Yoav

机构信息

Department of Biomedical Engineering, Technion - Israel Institute of Technology, Haifa, 3200001, Israel.

Optical cell biology group, Instituto Gulbenkian de Ciência, Oeiras, 2780-156, Portugal.

出版信息

Small Methods. 2025 Mar;9(3):e2400672. doi: 10.1002/smtd.202400672. Epub 2024 Oct 14.

Abstract

Generative models, such as diffusion models, have made significant advancements in recent years, enabling the synthesis of high-quality realistic data across various domains. Here, the adaptation and training of a diffusion model on super-resolution microscopy images are explored. It is shown that the generated images resemble experimental images, and that the generation process does not exhibit a large degree of memorization from existing images in the training set. To demonstrate the usefulness of the generative model for data augmentation, the performance of a deep learning-based single-image super-resolution (SISR) method trained using generated high-resolution data is compared against training using experimental images alone, or images generated by mathematical modeling. Using a few experimental images, the reconstruction quality and the spatial resolution of the reconstructed images are improved, showcasing the potential of diffusion model image generation for overcoming the limitations accompanying the collection and annotation of microscopy images. Finally, the pipeline is made publicly available, runnable online, and user-friendly to enable researchers to generate their own synthetic microscopy data. This work demonstrates the potential contribution of generative diffusion models for microscopy tasks and paves the way for their future application in this field.

摘要

生成模型,如扩散模型,近年来取得了重大进展,能够在各个领域合成高质量的逼真数据。在此,我们探索了扩散模型在超分辨率显微镜图像上的适应性和训练。结果表明,生成的图像与实验图像相似,并且生成过程并未表现出对训练集中现有图像的大量记忆。为了证明生成模型在数据增强方面的有用性,将使用生成的高分辨率数据训练的基于深度学习的单图像超分辨率(SISR)方法的性能,与仅使用实验图像或通过数学建模生成的图像进行训练的性能进行了比较。使用少量实验图像,提高了重建图像的质量和空间分辨率,展示了扩散模型图像生成在克服显微镜图像采集和标注所伴随的局限性方面的潜力。最后,该管道已公开可用,可在线运行且用户友好,以使研究人员能够生成自己的合成显微镜数据。这项工作展示了生成扩散模型对显微镜任务的潜在贡献,并为其在该领域的未来应用铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc57/11926487/6d6ee6e41c40/SMTD-9-2400672-g003.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验