Beijing Key Laboratory of Multimedia and Intelligent Software Technology, Faculty of Information Technology, Beijing Institute of Artificial Intelligence, Beijing University of Technology, Beijing, 100124, China.
Key Laboratory of Intelligent Education Technology and Application of Zhejiang Province, Zhejiang Normal University, Jinhua, Zhejiang 321004, China.
Brief Bioinform. 2024 Sep 23;25(6). doi: 10.1093/bib/bbae500.
Spatial transcriptomics reveals the spatial distribution of genes in complex tissues, providing crucial insights into biological processes, disease mechanisms, and drug development. The prediction of gene expression based on cost-effective histology images is a promising yet challenging field of research. Existing methods for gene prediction from histology images exhibit two major limitations. First, they ignore the intricate relationship between cell morphological information and gene expression. Second, these methods do not fully utilize the different latent stages of features extracted from the images. To address these limitations, we propose a novel hypergraph neural network model, HGGEP, to predict gene expressions from histology images. HGGEP includes a gradient enhancement module to enhance the model's perception of cell morphological information. A lightweight backbone network extracts multiple latent stage features from the image, followed by attention mechanisms to refine the representation of features at each latent stage and capture their relations with nearby features. To explore higher-order associations among multiple latent stage features, we stack them and feed into the hypergraph to establish associations among features at different scales. Experimental results on multiple datasets from disease samples including cancers and tumor disease, demonstrate the superior performance of our HGGEP model than existing methods.
空间转录组学揭示了复杂组织中基因的空间分布,为深入了解生物学过程、疾病机制和药物研发提供了重要线索。基于具有成本效益的组织学图像预测基因表达是一个很有前景但极具挑战性的研究领域。现有的基于组织学图像预测基因的方法存在两个主要局限性。首先,它们忽略了细胞形态信息与基因表达之间的复杂关系。其次,这些方法没有充分利用从图像中提取的特征的不同潜在阶段。为了解决这些局限性,我们提出了一种新的超图神经网络模型 HGGEP,用于从组织学图像预测基因表达。HGGEP 包括一个梯度增强模块,用于增强模型对细胞形态信息的感知能力。一个轻量级的骨干网络从图像中提取多个潜在阶段的特征,然后通过注意力机制来细化每个潜在阶段特征的表示,并捕捉它们与附近特征的关系。为了探索多个潜在阶段特征之间的高阶关联,我们将它们堆叠起来并输入到超图中,以建立不同尺度特征之间的关联。在包括癌症和肿瘤疾病在内的多种疾病样本数据集上的实验结果表明,我们的 HGGEP 模型优于现有方法。