Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany.
Leibniz Institute for Baltic Sea Research, Rostock 18119, Germany.
ACS Sens. 2024 Oct 25;9(10):5531-5540. doi: 10.1021/acssensors.4c01828. Epub 2024 Oct 14.
Optode-based chemical imaging is a rapidly evolving field that has substantially enhanced our understanding of the role of microenvironments and chemical gradients in biogeochemistry, microbial ecology, and biomedical sciences. Progress in sensor chemistry has resulted in a broadened spectrum of analytes, alongside enhancements in sensor performance (e.g., sensitivity, brightness, and photostability). However, existing imaging techniques are often costly, challenging to implement, and limited in their recording speed. Here we use the "frame-straddling" technique, originally developed for particle image velocimetry for imaging the O-dependent, integrated luminescence decay of optical O sensor materials. The method synchronizes short excitation pulses and camera exposures to capture two frames at varying brightness, where the first excitation pulse occurs at the end of the exposure of the first frame and the second excitation pulse at the beginning of the second frame. Here the first frame truncates the luminescence decay, whereas the second frame fully captures it. The difference between the frames quantifies the integral of the luminescence decay curve, which is proportional to the luminescence lifetime, at time scales below one millisecond. Short excitation pulses avoid depopulation of the ground state of luminophores, resulting in a linear Stern-Volmer response with increasing concentrations of the quencher (O), which can be predicted through a simple model. This methodology is compatible with a wide range of camera systems, making it a versatile tool for various optode based chemical imaging applications. We showcase the utility of frame straddling in measuring O dynamics around algae and by observing O scavenging sodium dithionite particles sinking through oxygenated water.
基于光学位移的化学成像是一个快速发展的领域,它极大地增强了我们对微环境和化学梯度在生物地球化学、微生物生态学和生物医学科学中的作用的理解。传感器化学的进展导致了分析物的光谱拓宽,同时提高了传感器的性能(例如,灵敏度、亮度和光稳定性)。然而,现有的成像技术通常成本高昂、实施困难且记录速度有限。在这里,我们使用“跨越帧”技术,该技术最初是为粒子图像测速法开发的,用于对光学 O 传感器材料的 O 依赖性综合发光衰减进行成像。该方法同步短激发脉冲和相机曝光,以在不同亮度下捕获两个帧,其中第一个激发脉冲发生在第一帧曝光结束时,第二个激发脉冲发生在第二帧开始时。在第一帧中,激发脉冲截断了发光衰减,而在第二帧中则完全捕获了它。两帧之间的差异定量了发光衰减曲线的积分,该积分与发光寿命成正比,时间尺度在一毫秒以下。短激发脉冲避免了荧光团基态的排空,导致淬灭剂(O)浓度增加时呈现出线性 Stern-Volmer 响应,这可以通过一个简单的模型来预测。该方法与各种相机系统兼容,使其成为各种基于光学位移的化学成像应用的多功能工具。我们展示了跨越帧技术在测量藻类周围 O 动力学和观察通过含氧水下沉的 O 清除连二亚硫酸钠颗粒方面的应用。