Department of Medical Biotechnology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.
Student of Veterinary Medicine, Faculty of Veterinary Medicine, Shahid Bahonar University of Kerman, Kerman, Iran.
Clin Chim Acta. 2025 Jan 15;565:119984. doi: 10.1016/j.cca.2024.119984. Epub 2024 Oct 12.
E. coli is a common pathogenic microorganism responsible for numerous food and waterborne illnesses. Traditional detection methods often require long, multi-step processes and specialized equipment. Electrochemical and optical biosensors offer promising alternatives due to their high sensitivity, selectivity, and real-time monitoring capabilities. Recent advancements in sensor development focus on various techniques for detecting E. coli, including optical (fluorescence, colorimetric analysis, surface-enhanced Raman spectroscopy, surface plasmon resonance, localized surface plasmon resonance, chemiluminescence) and electrochemical (amperometric, voltammetry, impedance, potentiometric). Herein, the latest advancements in optical and electrochemical biosensors created for identifying E. coli with an emphasis on surface modifications employing nanomaterials and biomolecules are outlined in this review. Electrochemical biosensors exploit the unique electrochemical properties of E. coli or its specific biomolecules to generate a measurable signal. In contrast, optical biosensors rely on interactions between E. coli and optical elements to generate a detectable response. Moreover, optical detection has been exploited in portable devices such as smart phones and paper-based sensors. Different types of electrodes, nanoparticles, antibodies, aptamers, and fluorescence-based systems have been employed to enhance the sensitivity and specificity of these biosensors. Integrating nanotechnology and biorecognition (which bind to a specific region of the E. coli) elements has enabled the development of portable and miniaturized devices for on-site and point-of-care (POC) applications. These biosensors have demonstrated high sensitivity and offer low detection limits for E. coli detection. The convergence of electrochemical and optical technologies promises excellent opportunities to revolutionize E. coli detection, improving food safety and public health.
大肠杆菌是一种常见的致病性微生物,可导致许多食源性和水源性疾病。传统的检测方法通常需要冗长的多步过程和专用设备。电化学和光学生物传感器具有高灵敏度、选择性和实时监测能力,因此是很有前途的替代方法。传感器开发的最新进展侧重于检测大肠杆菌的各种技术,包括光学(荧光、比色分析、表面增强拉曼光谱、表面等离子体共振、局域表面等离子体共振、化学发光)和电化学(安培、伏安法、阻抗、电位)。本文综述了最新的用于识别大肠杆菌的光学和电化学生物传感器的进展,重点介绍了利用纳米材料和生物分子进行表面修饰的技术。电化学生物传感器利用大肠杆菌或其特定生物分子的独特电化学性质来产生可测量的信号。相比之下,光学生物传感器依赖于大肠杆菌与光学元件之间的相互作用来产生可检测的响应。此外,光学检测已在智能手机和基于纸张的传感器等便携式设备中得到了利用。不同类型的电极、纳米粒子、抗体、适体和基于荧光的系统已被用于提高这些生物传感器的灵敏度和特异性。整合纳米技术和生物识别(与大肠杆菌的特定区域结合)元件,使得便携式和微型化设备得以开发,用于现场和即时检测(POC)应用。这些生物传感器已证明具有高灵敏度,并可实现对大肠杆菌的低检测限检测。电化学和光学技术的融合有望为大肠杆菌检测带来革命性的变化,从而提高食品安全和公共卫生水平。