Suppr超能文献

基于重症监护病房(ICU)入院首日临床特征对缺血性卒中患者长期死亡率的预测:一种易于使用的列线图。

Prediction of long-term mortality in patients with ischemic stroke based on clinical characteristics on the first day of ICU admission: An easy-to-use nomogram.

作者信息

Jin Guangyong, Hu Wei, Zeng Longhuan, Ma Buqing, Zhou Menglu

机构信息

Department of Critical Care Medicine, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China.

Department of Neurology, Affiliated Hospital of Hangzhou Normal University, Hangzhou, China.

出版信息

Front Neurol. 2023 Apr 14;14:1148185. doi: 10.3389/fneur.2023.1148185. eCollection 2023.

Abstract

BACKGROUND

This study aimed to establish and validate an easy-to-use nomogram for predicting long-term mortality among ischemic stroke patients.

METHODS

All raw data were obtained from the Medical Information Mart for Intensive Care IV database. Clinical features associated with long-term mortality (1-year mortality) among ischemic stroke patients were identified using least absolute shrinkage and selection operator regression. Then, binary logistic regression was used to construct a nomogram, the discrimination of which was evaluated by the concordance index (C-index), integrated discrimination improvement (IDI), and net reclassification index (NRI). Finally, a calibration curve and decision curve analysis (DCA) were employed to study calibration and net clinical benefit, compared to the Glasgow Coma Scale (GCS) and the commonly used disease severity scoring system.

RESULTS

Patients who were identified with ischemic stroke were randomly assigned into developing ( = 1,443) and verification ( = 646) cohorts. The following factors were associated with 1-year mortality among ischemic stroke patients, including age on ICU admission, marital status, underlying dementia, underlying malignant cancer, underlying metastatic solid tumor, heart rate, respiratory rate, oxygen saturation, white blood cells, anion gap, mannitol injection, invasive mechanical ventilation, and GCS. The construction of the nomogram was based on the abovementioned features. The C-index of the nomogram in the developing and verification cohorts was 0.820 and 0.816, respectively. Compared with GCS and the commonly used disease severity scoring system, the IDI and NRI of the constructed nomogram had a statistically positive improvement in predicting long-term mortality in both developing and verification cohorts (all with  < 0.001). The actual mortality was consistent with the predicted mortality in the developing ( = 0.862) and verification ( = 0.568) cohorts. Our nomogram exhibited greater net clinical benefit than GCS and the commonly used disease severity scoring system.

CONCLUSION

This proposed nomogram has good performance in predicting long-term mortality among ischemic stroke patients.

摘要

背景

本研究旨在建立并验证一种易于使用的列线图,用于预测缺血性中风患者的长期死亡率。

方法

所有原始数据均来自重症监护医学信息集市IV数据库。使用最小绝对收缩和选择算子回归确定缺血性中风患者中与长期死亡率(1年死亡率)相关的临床特征。然后,采用二元逻辑回归构建列线图,通过一致性指数(C指数)、综合判别改善(IDI)和净重新分类指数(NRI)评估其判别能力。最后,与格拉斯哥昏迷量表(GCS)和常用的疾病严重程度评分系统相比,采用校准曲线和决策曲线分析(DCA)来研究校准和净临床获益情况。

结果

确诊为缺血性中风的患者被随机分为开发队列(n = 1443)和验证队列(n = 646)。以下因素与缺血性中风患者的1年死亡率相关,包括入住重症监护病房时的年龄、婚姻状况、潜在痴呆、潜在恶性肿瘤、潜在转移性实体瘤、心率、呼吸频率、血氧饱和度、白细胞、阴离子间隙、甘露醇注射、有创机械通气和GCS。列线图的构建基于上述特征。开发队列和验证队列中列线图的C指数分别为0.820和0.816。与GCS和常用的疾病严重程度评分系统相比,构建的列线图在开发队列和验证队列中预测长期死亡率的IDI和NRI均有统计学上的显著改善(均P < 0.001)。开发队列(P = 0.862)和验证队列(P = 0.568)中的实际死亡率与预测死亡率一致。我们的列线图显示出比GCS和常用的疾病严重程度评分系统更大的净临床获益。

结论

本研究提出的列线图在预测缺血性中风患者的长期死亡率方面具有良好性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ad48/10140521/8b90cdb31df7/fneur-14-1148185-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验