Suppr超能文献

亚马逊两栖动物:多样性、空间分布模式、保护及采样不足

Amazonian amphibians: diversity, spatial distribution patterns, conservation and sampling deficits.

作者信息

Penhacek Marcos, Souza Thadeu Sobral, Santos Jessie Pereira, Guerra Vinicius, Castro-Souza Rodrigo Antônio, Rodrigues Domingos de Jesus

机构信息

Programa de Pós-Graduação em Ecologia e Conservação da Biodiversidade, Universidade Federal do Mato Grosso, Rua Fernando Corrêa da Costa 2367, 78060-900, Cuiabá, Brazil Programa de Pós-Graduação em Ecologia e Conservação da Biodiversidade, Universidade Federal do Mato Grosso, Rua Fernando Corrêa da Costa 2367, 78060-900 Cuiabá Brazil.

Centro de Biodiversidade, Instituto de Biociências, Departamento de Botânica e Ecologia, Universidade Federal do Mato Grosso, Rua Fernando Corrêa da Costa 2367, 78060-900, Cuiabá, Brazil Centro de Biodiversidade, Instituto de Biociências, Departamento de Botânica e Ecologia, Universidade Federal do Mato Grosso, Rua Fernando Corrêa da Costa 2367, 78060-900 Cuiabá Brazil.

出版信息

Biodivers Data J. 2024 Oct 1;12:e109785. doi: 10.3897/BDJ.12.e109785. eCollection 2024.

Abstract

The Amazon biome is home to the largest tropical forest on the planet and has the greatest global biodiversity on Earth. Despite this, several less charismatic taxonomic groups, such as amphibians, lack comprehensive studies on their species richness and spatial distribution in the Amazon Region. In this study, we investigated: i) patterns of richness and endemism of Amazonian amphibians across geopolitical and biogeographic divisions, ii) similarities between different Amazonian bioregions, iii) temporal trends in amphibian sampling, iv) conservation status of amphibians according to assessments of the IUCN and v) the importance of diverse data sources in building a robust database of amphibian occurrences. We aggregated data from four different sources: publicly accessible platforms, peer-reviewed articles, grey literature and fieldwork inventories spanning 15 years (2007-2021), ultimately compiling 160,643 records of 947 species across 7,418 sampled sites. The greatest diversity of species was found in Peru, Brazil and Ecuador, with notable amphibian diversity and endemism in regions such as the western basins and the Tapajós River Basin in the central-southern Amazon. Geographical analysis of species diversity revealed four distinct groups defined by latitudinal (the Amazon River) and longitudinal (the Juruá, Madeira and Tapajós Rivers) gradients, with low species similarity (< 40%), particularly in the basins of north-western Amazonia. Amphibian sampling in the Amazon has intensified since the 1950s with the establishment of important research centres such as INPA and the GOELD Museum in the Brazilian Amazon. Approximately 18% of Amazonian amphibian species face extinction risk, according to IUCN assessments, highlighting the need for comprehensive data sources to understand and conserve species in this megadiverse region. Our findings suggest that river systems likely influence Amazonian amphibian species composition due to biogeographic history, emphasising the need for robust taxonomic and spatial databases. This study, therefore, contributes a valuable large-scale dataset for Amazonian amphibians, guiding future research and strategies for amphibian conservation.

摘要

亚马逊生物群落是地球上最大的热带森林所在地,拥有地球上最丰富的全球生物多样性。尽管如此,一些不太引人关注的分类群,如两栖动物,在亚马逊地区的物种丰富度和空间分布方面缺乏全面的研究。在本研究中,我们调查了:i)亚马逊两栖动物在地缘政治和生物地理分区中的丰富度和特有性模式,ii)不同亚马逊生物区域之间的相似性,iii)两栖动物采样的时间趋势,iv)根据国际自然保护联盟(IUCN)的评估得出的两栖动物保护状况,以及v)不同数据源在构建强大的两栖动物出现数据库中的重要性。我们汇总了来自四个不同来源的数据:可公开访问的平台、同行评审文章、灰色文献以及跨越15年(2007 - 2021年)的实地调查清单,最终汇编了7418个采样点的947种物种的160,643条记录。物种多样性最高的地区是秘鲁、巴西和厄瓜多尔,在亚马逊中南部的西部流域和塔帕若斯河流域等地区有显著的两栖动物多样性和特有性。物种多样性的地理分析揭示了由纬度(亚马逊河)和经度(茹鲁阿河、马德拉河和塔帕若斯河)梯度定义的四个不同组,物种相似性较低(<40%),特别是在亚马逊西北部的流域。自20世纪50年代以来,随着巴西亚马逊地区重要研究中心(如巴西国家亚马逊研究所和戈尔德博物馆)的建立,亚马逊地区的两栖动物采样工作有所加强。根据IUCN的评估,约18%的亚马逊两栖动物物种面临灭绝风险,这凸显了需要全面的数据源来了解和保护这个生物多样性丰富地区的物种。我们的研究结果表明,由于生物地理历史,河流系统可能会影响亚马逊两栖动物的物种组成,强调了建立强大的分类学和空间数据库的必要性。因此,本研究为亚马逊两栖动物贡献了一个有价值的大规模数据集,为未来的两栖动物保护研究和策略提供了指导。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2e9d/11471977/3ea331371eba/bdj-12-e109785-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验