Suppr超能文献

隐匿性糖尿病:马来西亚吉打州兰卡威岛低收入人群的关键风险因素(2022 - 2023年)

Silent Diabetes: Key Risk Factors Among the Low-Income Population of Langkawi Island, Kedah, Malaysia (2022-2023).

作者信息

Kamarudin Syuaib Aiman Amir, Rahim Afiq Izzudin A, Muhd Shueib Muhd Suhaili, Ismail Mansor

机构信息

Department of Community Medicine, Universiti Sains Malaysia School of Medical Sciences, Kota Bharu, MYS.

Langkawi District Health Office, Kedah Health State Department, Langkawi, MYS.

出版信息

Cureus. 2024 Oct 13;16(10):e71386. doi: 10.7759/cureus.71386. eCollection 2024 Oct.

Abstract

BACKGROUND

Diabetes mellitus (DM) poses a growing global health challenge, contributing to significant morbidity, mortality, and economic burden. In Malaysia, the prevalence of diabetes is increasing, especially among low-income populations with limited access to healthcare. Many cases remain undiagnosed, increasing the risk of severe complications and further straining healthcare resources. Island populations, such as those in Langkawi, are particularly vulnerable due to geographical isolation, socioeconomic constraints, and inadequate healthcare services.

OBJECTIVES

To determine the prevalence of undiagnosed DM and identify the associated risk factors among the low-income population on Langkawi Island, Kedah, Malaysia.

METHODS

We conducted a cross-sectional study from January 2022 to December 2023, involving 1,070 participants aged 40 years and above, all eligible under the low-income scheme. Data on sociodemographic characteristics, body mass index (BMI), lifestyle, and medical history were collected through a structured proforma from four local health clinics. Logistic regression analysis was used to identify significant predictors of undiagnosed DM. The model's predictive accuracy was assessed using the area under the receiver operating characteristic (ROC) curve.

RESULTS

The prevalence of undiagnosed DM among the low-income population on Langkawi Island was 6.7%. Multiple logistic regression found three important predictors: having a higher BMI (overweight: adjusted odds ratio (AOR): 2.72; 95% confidence interval (CI): 1.40-5.30; p = 0.003; obese: AOR: 2.43; 95% CI: 1.19-5.00; p = 0.015); living on a smaller island (AOR: 1.71; 95% CI: 1.03-2.85; p = 0.039); and having a medical history (AOR: 0.21; 95% CI: 0.12-0.36; p < 0.001). The model demonstrated good predictive accuracy with an area under the ROC curve of 0.758 and correctly classified 93.3% of cases.

CONCLUSION

This study reveals a significant burden of undiagnosed DM within Langkawi's low-income population, especially among individuals with higher BMI and those residing in geographically isolated areas. The findings highlight the urgent need for enhanced, context-specific screening programs and early detection efforts tailored to this vulnerable population. Effective public health strategies should prioritize regular health check-ups, obesity management, and improved access to healthcare services in isolated communities to reduce the prevalence and complications associated with undiagnosed diabetes.

摘要

背景

糖尿病对全球健康构成了日益严峻的挑战,导致了严重的发病率、死亡率和经济负担。在马来西亚,糖尿病的患病率正在上升,尤其是在获得医疗保健机会有限的低收入人群中。许多病例仍未被诊断出来,这增加了严重并发症的风险,并进一步加重了医疗资源的负担。像兰卡威的岛民这样的人群,由于地理隔离、社会经济限制和医疗服务不足,特别容易受到影响。

目的

确定马来西亚吉打州兰卡威岛低收入人群中未诊断出的糖尿病患病率,并识别相关风险因素。

方法

我们在2022年1月至2023年12月进行了一项横断面研究,涉及1070名40岁及以上的参与者,他们均符合低收入计划的资格。通过结构化问卷从四个当地健康诊所收集了社会人口学特征、体重指数(BMI)、生活方式和病史的数据。使用逻辑回归分析来识别未诊断出的糖尿病的显著预测因素。使用受试者操作特征(ROC)曲线下面积评估模型的预测准确性。

结果

兰卡威岛低收入人群中未诊断出的糖尿病患病率为6.7%。多元逻辑回归发现了三个重要的预测因素:BMI较高(超重:调整后的优势比(AOR):2.72;95%置信区间(CI):1.40 - 5.30;p = 0.003;肥胖:AOR:2.43;95% CI:1.19 - 5.00;p = 0.015);居住在较小的岛屿上(AOR:1.71;95% CI:1.03 - 2.85;p = 0.039);以及有病史(AOR:0.21;95% CI:0.12 - 0.36;p < 0.001)。该模型显示出良好的预测准确性,ROC曲线下面积为0.758,正确分类了93.3%的病例。

结论

本研究揭示了兰卡威低收入人群中未诊断出的糖尿病的重大负担,特别是在BMI较高的个体和居住在地理隔离地区的人群中。研究结果突出了迫切需要加强针对这一弱势群体的、因地制宜的筛查项目和早期检测工作。有效的公共卫生策略应优先考虑定期健康检查、肥胖管理以及改善偏远社区获得医疗服务的机会,以降低未诊断糖尿病的患病率和并发症。

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验