Suppr超能文献

关于通过强修正(p,h)-凸函数的 Riemann-Liouville 积分和 Caputo 分数阶导数。

On Riemann-Liouville integrals and Caputo Fractional derivatives via strongly modified (p, h)-convex functions.

机构信息

Department of Mathematics, University of Sargodha, Sargodha, Pakistan.

Higher Institute of Education of Gombe (ISP Gombe), Kinshasa, Congo.

出版信息

PLoS One. 2024 Oct 15;19(10):e0311386. doi: 10.1371/journal.pone.0311386. eCollection 2024.

Abstract

The paper introduces a new class of convexity named strongly modified (p, h)-convex functions and establishes various properties of these functions, providing a comprehensive understanding of their behavior and characteristics. Additionally, the paper investigates Schur inequality and Hermite-Hadamard (H-H) inequalities for this new class of convexity. Also, H-H inequalities are proved within context of Riemann-Liouville integrals and Caputo Fractional derivatives. The efficiency and feasibility of Schur inequality and H-H inequalities are supported by incorporating multiple illustrations, that demonstrate the applicability of strongly modified (p, h)-convex functions. The results contribute to the field of mathematical analysis and provide valuable insights into the properties and applications of strongly modified (p, h)-convex functions.

摘要

本文引入了一类新的凸性——强修正(p,h)-凸函数,并建立了这些函数的各种性质,全面了解它们的行为和特征。此外,本文还研究了这一新类凸性的 Schur 不等式和 Hermite-Hadamard(H-H)不等式。此外,H-H 不等式是在 Riemann-Liouville 积分和 Caputo 分数导数的背景下证明的。Schur 不等式和 H-H 不等式的有效性和可行性通过包含多个示例得到支持,这些示例展示了强修正(p,h)-凸函数的适用性。这些结果为数学分析领域做出了贡献,并为强修正(p,h)-凸函数的性质和应用提供了有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/78fd/11478826/5fb9d41e7210/pone.0311386.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验