Suppr超能文献

用于预测供应链管理配送成本的深度机器学习模型与传统机器学习模型的比较

Comparison of deep and conventional machine learning models for prediction of one supply chain management distribution cost.

作者信息

Yu Xiaomo, Tang Ling, Long Long, Sina Mohammad

机构信息

Department of Logistics Management and Engineering, Nanning Normal University, Nanning, 530001, Guangxi, China.

College of The Arts, Guangxi Minzu University, Nanning, 530001, Guangxi, China.

出版信息

Sci Rep. 2024 Oct 15;14(1):24195. doi: 10.1038/s41598-024-75114-9.

Abstract

Strategic supply chain management (SCM) is essential for organizations striving to optimize performance and attain their goals. Prediction of supply chain management distribution cost (SCMDC) is one branch of SCM and it's essential for organizations striving to optimize performance and attain their goals. For this purpose, four machine learning algorithms, including random forest (RF), support vector machine (SVM), multilayer perceptron (MLP) and decision tree (DT), along with deep learning using convolutional neural network (CNN), was used to predict and analyze SCMDC. A comprehensive dataset consisting of 180,519 open-source data points was used for analyze and make the structure of each algorithm. Evaluation based on Root Mean Square Error (RMSE) and Correlation coefficient (R2) show the CNN model has high accuracy in SCMDC prediction than other models. The CNN algorithm demonstrated exceptional accuracy on the test dataset, with an RMSE of RMSE of 0.528 and an R2 value of 0.953. Notable advantages of CNNs include automatic learning of hierarchical features, proficiency in capturing spatial and temporal patterns, computational efficiency, robustness to data variations, minimal preprocessing requirements, end-to-end training capability, scalability, and widespread adoption supported by extensive research. These attributes position the CNN algorithm as the preferred choice for precise and reliable SCMDC predictions, especially in scenarios requiring rapid responses and limited computational resources.

摘要

战略供应链管理(SCM)对于致力于优化绩效并实现其目标的组织至关重要。供应链管理配送成本(SCMDC)预测是供应链管理的一个分支,对于致力于优化绩效并实现其目标的组织来说至关重要。为此,使用了四种机器学习算法,包括随机森林(RF)、支持向量机(SVM)、多层感知器(MLP)和决策树(DT),以及使用卷积神经网络(CNN)的深度学习,来预测和分析SCMDC。一个由180,519个开源数据点组成的综合数据集被用于分析并构建每种算法的结构。基于均方根误差(RMSE)和相关系数(R2)的评估表明,CNN模型在SCMDC预测方面比其他模型具有更高的准确性。CNN算法在测试数据集上表现出卓越的准确性,RMSE为0.528,R2值为0.953。CNN的显著优点包括自动学习分层特征、擅长捕捉空间和时间模式、计算效率高、对数据变化具有鲁棒性、预处理要求低、端到端训练能力、可扩展性以及得到广泛研究支持的广泛应用。这些特性使CNN算法成为精确可靠的SCMDC预测的首选,特别是在需要快速响应和计算资源有限的场景中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/19c8/11480343/1f2d2e6a169e/41598_2024_75114_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验